
17Code Improvement

In Chapter 15 we discussed the generation, assembly, and linking of target
code in the middle and back end of a compiler. The techniques we presented led to
correct but highly suboptimal code: there were many redundant computations, and
inefficient use of the registers, multiple functional units, and cache of a modern
microprocessor. This chapter takes a look at code improvement: the phases of
compilation devoted to generating good code. For the most part we will interpret
‘‘good’’ to mean fast. In a few cases we will also consider program transformations
that decrease memory requirements. On occasion a real compiler may try to
minimize power consumption, dollar cost of execution on a commercial cloud
server, or demand for some other resource; we will not consider these issues here.

There are several possible levels of ‘‘aggressiveness’’ in code improvement. In
a very simple compiler, or in a ‘‘nonoptimizing’’ run of a more sophisticated
compiler, we can use a peephole optimizer to peruse already-generated target code
for obviously suboptimal sequences of adjacent instructions. At a slightly higher
level, typical of the baseline behavior of production-quality compilers, we can
generate near-optimal code for basic blocks. As described in Chapter 15, a basic
block is a maximal-length sequence of instructions that will always execute in its
entirety (assuming it executes at all). In the absence of delayed branches, each
basic block in assembly language or machine code begins with the target of a
branch or with the instruction after a conditional branch, and ends with a branch
or with the instruction before the target of a branch. As a result, in the absence of
hardware exceptions, control never enters a basic block except at the beginning,
and never exits except at the end. Code improvement at the level of basic blocks is
known as local optimization. It focuses on the elimination of redundant operations
(e.g., unnecessary loads or common subexpression calculations), and on effective
instruction scheduling and register allocation.

At higher levels of aggressiveness, production-quality compilers employ tech-
niques that analyze entire subroutines for further speed improvements. These
techniques are known as global optimization.1 They include multi-basic-block
versions of redundancy elimination, instruction scheduling, and register allocation,

C 357

C 358 Chapter 17 Code Improvement

plus code modifications designed to improve the performance of loops. Both global
redundancy elimination and loop improvement typically employ a control flow
graph representation of the program, as described in Section 15.1.1. Both employ
a family of algorithms known as data flow analysis to trace the flow of information
across the boundaries between basic blocks.

At the highest levels of aggressiveness, compilers may perform various forms of
interprocedural code improvement. Interprocedural improvement is difficult for
two main reasons. First, because a subroutine may be called from many different
places in a program, it is difficult to identify (or fabricate) conditions (available
registers, common subexpressions, etc.) that are guaranteed to hold at all call sites.
Second, because many subroutines are separately compiled, an interprocedural
code improver must generally subsume some of the work of the linker.

In the sections below we consider peephole, local, and global code improvement.
We will not cover interprocedural improvement; interested readers are referred to
other texts (see the Bibliographic Notes at the end of the chapter). Moreover, even
for the subjects we cover, our intent will be more to ‘‘demystify’’ code improve-
ment than to describe the process in detail. Much of the discussion (beginning in
Section C 17.3) will revolve around the successive refinement of code for a single
subroutine. This extended example will allow us to illustrate the effect of several
key forms of code improvement without dwelling on the details of how they are
achieved. Entire books continue to be written on code improvement; it remains a
very active research topic.

As in most texts, we will sometimes refer to code improvement as ‘‘optimization,’’
though this term is really a misnomer: we will seldom have any guarantee that our
techniques will lead to optimal code. As it turns out, even some of the relatively
simple aspects of code improvement (e.g., minimizing the number of registers
needed in a basic block) can be shown to be NP-hard. True optimization is a realistic
option only for small, special-purpose program fragments [Mas87]. Our discussion
will focus on the improvement of code for imperative programs. Optimizations
specific to functional or logic languages are beyond the scope of this book.

We begin in Section C 17.1 with a more detailed consideration of the phases
of code improvement. We then turn to peephole optimization in Section C 17.2.
It can be performed in the absence of other optimizations if desired, and the
discussion introduces some useful terminology. In Sections C 17.3 and C 17.4
we consider local and global redundancy elimination. Sections C 17.5 and C 17.7
cover code improvement for loops. Section C 17.6 covers instruction scheduling.
Section C 17.8 covers register allocation.

1 The adjective ‘‘global’’ is standard but somewhat misleading in this context, since the improvements
do not consider the program as a whole; ‘‘subroutine-level’’ might be more accurate.

17.1 Phases of Code Improvement C 359

17.1 Phases of Code Improvement

As we noted in Chapter 15, the structure of the middle and back end varies consid-
erably from compiler to compiler. For simplicity of presentation we will continue to
focus on the structure introduced in Section 15.1. In that section (as in Section 1.6)
we characterized machine-independent and machine-specific code improvement
as individual phases of compilation, separated by target code generation. We mustEXAMPLE 17.1

Code improvement phases now acknowledge that this was an oversimplification. In reality, code improvement
is a substantially more complicated process, often comprising a very large num-
ber of phases. As noted in Section C 15.2.1, gcc has more than 140 phases in its
middle end, and 70 in the back end—far more than we can cover in this chapter.
In some cases optimizations depend on one another, and must be performed in a
particular order. In other cases they are independent, and can be performed in any
order. In still other cases it can be important to repeat an optimization, in order
to recognize new opportunities for improvement that were not visible until some
other optimization was applied.

We will concentrate in our discussion on the forms of code improvement that
tend to achieve the largest increases in execution speed, and are most widely used.
Compiler phases to implement these improvements are shown in Figure C 17.1.
Within this structure, the middle end begins with intermediate code generation.
This phase identifies fragments of the syntax tree that correspond to basic blocks. It
then creates a control flow graph in which each node contains a linear sequence of
three-address instructions for an idealized machine, typically one with an unlimited
supply of virtual registers. The (machine-specific) back end begins with target code
generation. This phase strings the basic blocks together into a linear program,
translating each block into the instruction set of the target machine and generating
branch instructions that correspond to the arcs of the control flow graph.

Machine-independent code improvement in Figure C 17.1 is shown as three
key phases. The first of these identifies and eliminates redundant loads, stores, and
computations within each basic block. The second deals with similar redundancies
across the boundaries between basic blocks (but within the bounds of a single
subroutine). The third effects several improvements specific to loops; these are
particularly important, since most programs spend most of their time in loops. In
Sections C 17.4, C 17.5, and C 17.7, we shall see that global redundancy elimination
and loop improvement may actually be subdivided into several separate phases.

We have shown machine-specific code improvement as four separate phases.
The first and third of these are essentially identical. As we noted in Section C 5.5.2,
register allocation and instruction scheduling tend to interfere with one another:
the instruction schedules that do the best job of minimizing pipeline stalls tend to
increase the demand for architectural registers (this demand is commonly known
as register pressure). A common strategy, assumed in our discussion, is to schedule
instructions first, then allocate architectural registers, then schedule instructions
again. If it turns out that there aren’t enough architectural registers to go around,
the register allocator will generate additional load and store instructions to spill

C 360 Chapter 17 Code Improvement

Scanner (lexical analysis)
Character stream

Token stream

Abstract syntax tree (AST)

Abstract syntax tree with
annotations (high-level IF)

Front end

Control �ow graph with
pseudoinstructions in basic

blocks (medium-level IF)

Machine-
independent

Machine-
speci�c

Modi�ed control �ow graph

Modi�ed control �ow graph

Modi�ed control �ow graph

Modi�ed assembly language

Modi�ed assembly language

Modi�ed assembly language

Final assembly language

(Almost) assembly language
(low-level IF)

Parser and AST generation

Semantic analysis

Local redundancy
elimination

Global redundancy
elimination

Loop improvement

Target code generation

Preliminary
instruction scheduling

Register allocation

Final instruction scheduling

Peephole optimization

Intermediate
code generation

Back end

Figure 17.1 A more detailed view of the compiler structure originally presented in Figure 15.1.
Both machine-independent and machine-specific code improvement have been divided into
multiple phases. As before, the dashed line shows a common ‘‘break point’’ for a two-pass
compiler. Machine-independent code improvement may sometimes be located in a separate
‘‘middle end’’ pass.

17.2 Peephole Optimization C 361

registers temporarily to memory. The second round of instruction scheduling
attempts to fill any delays induced by the extra loads.

17.2 Peephole Optimization

In a simple compiler with no machine-independent code improvement, a code
generator can simply walk the abstract syntax tree, producing naive code, either as
output to a file or global list, or as annotations in the tree. As we saw in Chapters 1
and 15, however, the result is generally of very poor quality (contrast the code of
Example 1.2 with that of Figure 1.7). Among other things, every use of a variable
as an r-value results in a load, and every assignment results in a store.

A relatively simple way to significantly improve the quality of naive code is to
run a peephole optimizer over the target code. A peephole optimizer works by
sliding a several-instruction window (a peephole) over the target code, looking
for suboptimal patterns of instructions. The set of patterns to look for is heuristic;
generally one creates patterns to match common suboptimal idioms produced by
a particular code generator, or to exploit special instructions available on a given
machine. Here are a few examples:

Elimination of redundant loads and stores: The peephole optimizer can often rec-EXAMPLE 17.2
ognize that the value produced by a load instruction is already available in a
register. For example:

r2 := r1 + 5
i := r2
r3 := i
r3 := r3 × 3

becomes
r2 := r1 + 5
i := r2
r3 := r2 × 3

In a similar but less common vein, if there are two stores to the same location
within the optimizer’s peephole (with no possible intervening load from that
location), then we can generally eliminate the first.

Constant folding: A naive code generator may produce code that performs calcula-EXAMPLE 17.3
tions at run time that could actually be performed at compile time. A peephole
optimizer can often recognize such code. For example:

r2 := 3 × 2 becomes r2 := 6

Constant propagation: Sometimes we can tell that a variable will have a constantEXAMPLE 17.4
value at a particular point in a program. We can then replace occurrences of the
variable with occurrences of the constant:
r2 := 4
r3 := r1 + r2
r2 := . . .

becomes
r2 := 4
r3 := r1 + 4
r2 := . . .

and then r3 := r1 + 4
r2 := . . .

The final assignment to r2 tells us that the previous value (the 4) in r2 was
dead—it was never going to be needed. (By analogy, a value that may be needed

C 362 Chapter 17 Code Improvement

in some future computation is said to be live.) Loads of dead values can be
eliminated. Similarly,

r2 := 4
r3 := r1 + r2
r3 := ∗r3
r2 := . . .

becomes
r3 := r1 + 4
r3 := ∗r3
r2 := . . .

and then r3 := ∗(r1 +4)
r2 := . . .

(This again leverages that fact that the 4 in r2 is dead at the final assignment.)
Often constant folding will reveal an opportunity for constant propagation.

Sometimes the reverse occurs:
r1 := 3
r2 := r1 × 2

becomes r1 := 3
r2 := 3 × 2

and then r1 := 3
r2 := 6

If the 3 in r1 is dead, then the initial load can also be eliminated.
Common subexpression elimination: When the same calculation occurs twiceEXAMPLE 17.5

within the peephole of the optimizer, we can often eliminate the second calcula-
tion:
r2 := r1 × 5
r2 := r2 + r3
r3 := r1 × 5

becomes
r4 := r1 × 5
r2 := r4 + r3
r3 := r4

Often, as shown here, an extra register will be needed to hold the common
value.

Copy propagation: Even when we cannot tell that the contents of register b willEXAMPLE 17.6
be constant, we may sometimes be able to tell that register b will contain the
same value as register a. We can then replace uses of b with uses of a, so long as
neither a nor b is modified:
r2 := r1
r3 := r1 + r2
r2 := 5

becomes
r2 := r1
r3 := r1 + r1
r2 := 5

and then r3 := r1 + r1
r2 := 5

Performed early in code improvement, copy propagation can serve to decrease
register pressure. In a peephole optimizer it may allow us (as in this case, in
which the copy of r1 in r2 is dead) to eliminate one or more instructions.

Strength reduction: Numeric identities can sometimes be used to replace a com-EXAMPLE 17.7
paratively expensive instruction with a cheaper one. In particular, multiplication
or division by powers of two can be replaced with adds or shifts:

r1 := r2 × 2 becomes r1 := r2 + r2 or r1 := r2 << 1

r1 := r2 / 2 becomes r1 := r2 >> 1

(This last replacement may not be correct when r2 is negative; see Exer-
cise C 17.1.) In a similar vein, algebraic identities allow us to perform sim-
plifications like the following:

r1 := r2 × 0 becomes r1 := 0

17.2 Peephole Optimization C 363

Elimination of useless instructions: Instructions like the following can be droppedEXAMPLE 17.8
entirely:

r1 := r1 + 0
r1 := r1 × 1

Filling of load and branch delays: Several examples of delay-filling transforma-
tions were presented in Section C 5.5.1.

Exploitation of the instruction set: Particularly on CISC machines, sequences ofEXAMPLE 17.9
simple instructions can often be replaced by a smaller number of more complex
instructions. For example,

r1 := r1 & 0x0000FF00
r1 := r1 >> 8

can be replaced by an ‘‘extract byte’’ instruction. The sequence

r1 := r2 + 8
r3 := ∗r1

where r1 is dead at the end can be replaced by a single load of r3 using a base
plus displacement addressing mode. Similarly,

r1 := ∗r2
r2 := r2 + 4

where ∗r2 is a 4-byte quantity can be replaced by a single load with an auto-
increment addressing mode. On many machines, a series of loads from consec-
utive locations can be replaced by a single, multiple-register load.

Because they use a small, fixed-size window, peephole optimizers tend to be
very fast: they impose a small, constant amount of overhead per instruction. They
are also relatively easy to write and, when used on naive code, can yield dramatic
performance improvements.

It should be emphasized, however, that most of the forms of code improvement
in Examples C 17.2 through C 17.9 are not specific to peephole optimization. In fact,
all but the last (exploitation of the instruction set) will appear in our discussion of
more general forms of code improvement. The more general forms will do a better
job, because they won’t be limited to looking at a narrow window of instructions. In
a compiler with good machine-specific and machine-independent code improvers,

DESIGN & IMPLEMENTATION

17.1 Peephole optimization
In many cases, it is easier to count on the code improver to catch and fix subop-
timal idioms than it is to generate better code in the first place. Even a peephole
optimizer will catch such common examples as multiplication by one or addition
of zero; there is no point adding complexity to the code generator to treat these
cases specially.

C 364 Chapter 17 Code Improvement

there may be no need for the peephole optimizer to eliminate redundancies or
useless instructions, fold constants, perform strength reduction, or fill load and
branch delays. In such a compiler the peephole optimizer serves mainly to exploit
idiosyncrasies of the target machine, and perhaps to clean up certain suboptimal
code idioms that leak through the rest of the back end.

17.3 Redundancy Elimination in Basic Blocks

To implement local optimizations, the compiler must first identify the fragments
of the syntax tree that correspond to basic blocks, as described in Section 15.1.1.
Roughly speaking, these fragments consist of tree nodes that are adjacent according
to in-order traversal, and contain no selection or iteration constructs. In Figure 15.6,
we presented inference rules to generate linear (goto-containing) code for simple
syntax trees. A similar set of inference rules can be used to create a control flow
graph (Exercise 15.6).

A call to a user subroutine within a control flow graph could be treated as a pair
of branches, defining a boundary between basic blocks, but as long as we know
that the call will return we can simply treat it as an instruction with potentially
wide-ranging side effects (i.e., as an instruction that may overwrite many registers
and memory locations). As we noted in Section 9.2.4, the compiler may also
choose to expand small subroutines in-line. In this case the behavior of the ‘‘call’’ is
completely visible. If the called routine consists of a single basic block, it becomes a
part of the calling block. If it consists of multiple blocks, its prologue and epilogue
become part of the blocks before and after the call.

17.3.1 A Running Example

Throughout much of the remainder of this chapter we will trace the improvementEXAMPLE 17.10
The combinations
subroutine

of code for a single subroutine: specifically, one that calculates into an array the

DESIGN & IMPLEMENTATION

17.2 Basic blocks
Many of a program’s basic blocks are obvious in the source. Some, however, are
created by the compiler during the translation process. Loops may be created, for
example, to copy or initialize large records or subroutine parameters. Run-time
semantic checks, likewise, induce large numbers of implicit selection statements.
Moreover, as we shall see in Sections C 17.4.2, C 17.5, and C 17.7, many opti-
mizations move code from one basic block to another, create or destroy basic
blocks, or completely restructure loop nests. As a result of these optimizations,
the final control flow graph may be very different from what the programmer
might naively expect.

17.3.1 A Running Example C 365

Block 4

Block 1

Block 3

Block 2

:=

[] 1 [] 1
t 1

A 0
A n

i 1 i div

n

t div

× i

t −

+ i

n 1

[]
[]

t

A i

t

A −

n i

++

i
2

for
return

:= :=

:=
:=

:=

:= <_

Figure 17.2 Syntax tree for the combinations subroutine. Portions of the tree corresponding
to basic blocks have been circled.

binomial coefficients
(n

m
)

for all 0 ≤ m ≤ n. These are the elements of the nth row
of Pascal’s triangle. The mth element of the row indicates the number of distinct
combinations of m items that may be chosen from among a collection of n items.
In C, the code looks like this:

void combinations(int n, int *A) {
int i, t;
A[0] = 1;
A[n] = 1;
t = 1;
for (i = 1; i <= n/2; i++) {

t = (t * (n+1-i)) / i;
A[i] = t;
A[n-i] = t;

}
}

This code capitalizes on the fact that
(n

m
)

=
(n

n−m
)

for all 0 ≤ m ≤ n. One can
prove (Exercise C 17.2) that the use of integer arithmetic will not lead to round-off
errors.

A syntax tree for our subroutine appears in Figure C 17.2, with basic blocksEXAMPLE 17.11
Syntax tree and naive
control flow graph

identified. The corresponding control flow graph appears in Figure C 17.3. To avoid
artificial interference between instructions at this early stage of code improvement,
we employ a medium-level intermediate form (IF) in which every calculated value
is placed in a separate register. To emphasize that these are virtual registers (of

C 366 Chapter 17 Code Improvement

Block 1:
 sp := sp – 8
 v1 := r0 –– n
 n := v1
 v2 := r1 –– A
 A := v2

 v3 := A
 v4 := 1
 *v3 := v4
 v5 := A
 v6 := n
 v7 := 4
 v8 := v6 × v7
 v9 := v5 + v8
 v10 := 1
 *v9 := v10
 v11 := 1
 t := v11
 v12 := 1
 i := v12
 goto Block 3

Block 4:
 sp := sp + 8
 goto *lr

Block 3:
 v39 := i
 v40 := n
 v41 := 2
 v42 := v40 div v41
 v43 := v39 <_ v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v13 := t
 v14 := n
 v15 := 1
 v16 := v14 + v15
 v17 := i
 v18 := v16 − v17
 v19 := v13 × v18
 v20 := i
 v21 := v19 div v20
 t := v21
 v22 := A
 v23 := i
 v24 := 4
 v25 := v23 × v24
 v26 := v22 + v25
 v27 := t
 *v26 := v27
 v28 := A
 v29 := n
 v30 := i
 v31 := v29 − v30
 v32 := 4
 v33 := v31 × v32
 v34 := v28 + v33
 v35 := t
 *v34 := v35
 v36 := i
 v37 := 1
 v38 := v36 + v37
 i := v38
 goto Block 3

Figure 17.3 Naive control flow graph for the combinations subroutine. Note that reference
parameter A contains the address of the array into which to write results; hence we write v3 :=
A instead of v3 := &A.

17.3.2 Value Numbering C 367

which there is an unlimited supply), we name them v1, v2, We will use r1,
r2, . . . to represent architectural registers in Section C 17.8.

The fact that no virtual register is assigned a value by more than one instruction
in the original control flow graph is crucial to the success of our code improvement
techniques. Informally, it says that every value that could eventually end up in a
separate architectural register will, at least at first, be placed in a separate virtual
register. Of course if an assignment to a virtual register appears within a loop, then
the register may take on a different value in every iteration. In addition, as we move
through the various phases of code improvement we will relax our rules to allow a
virtual register to be assigned a value in more than one place. The key point is that
by employing a new virtual register whenever possible at the outset we maximize
the degrees of freedom available to later phases of code improvement.

In the initial (entry) and final (exit) blocks, we have included code for the
subroutine prologue and epilogue. We have assumed naive Arm calling conventions,
as described in Section C 9.2.2. We have also assumed that the compiler has
recognized that our subroutine is a leaf, and that it therefore has no need to save
the return address (link register—lr) or frame pointer (r7) registers. In all cases,
accesses to n, A, i, and t in memory should be interpreted as performing the
appropriate displacement addressing with respect to the stack pointer (sp) register.
Though we assume that parameter values were passed in registers (architectural
registers r0 and r1 on Arm), our original (naive) code immediately saves these
values to memory, so that subsequent accesses can be handled in the same way
as they are for local variables. We make the saves by way of virtual registers so
that they will be visible to the global value numbering algorithm described in
Section C 17.4.1. Eventually, after several stages of improvement, we will find that
both the parameters and the local variables can be kept permanently in registers,
eliminating the need for the various loads, stores, and copy operations.

17.3.2 Value Numbering

To improve the code within basic blocks, we need to minimize loads and stores,
and to identify redundant calculations. One common way to accomplish these
tasks is to translate the syntax tree for a basic block into an expression DAG (di-
rected acyclic graph) in which redundant loads and computations are merged into
individual nodes with multiple parents [ALSU07, Secs. 6.1.1 and 8.5.1]. Similar
functionality can also be obtained without an explicitly graphical program repre-
sentation, through a technique known as local value numbering [Muc97, Sec. 12.4].
We describe this technique below.

Value numbering assigns the same name (a ‘‘number’’—historically, a table
index) to any two or more symbolically equivalent computations (‘‘values’’), so
that redundant instances will be recognizable by their common name. In the for-
mulation here, our names are virtual registers, which we merge whenever they are
guaranteed to hold a common value. While performing local value numbering, we
will also implement local constant folding, constant propagation, copy propagation,

C 368 Chapter 17 Code Improvement

common subexpression elimination, strength reduction, and useless instruction
elimination. (The distinctions among these optimizations will be clearer in the
global case.)

We scan the instructions of a basic block in order, maintaining a dictionary
to keep track of values that have already been loaded or computed, and writing
instructions to a new, improved basic block that will replace the original one. For
a load instruction, vi := x, we consult the dictionary to see whether x is already
in some register v j. If so, we simply add an entry to the dictionary indicating
that uses of vi should be replaced by uses of v j. If x is not in the dictionary, we
generate a load in the new version of the basic block, and add an entry to the
dictionary indicating that x is available in vi . For a load of a constant, vi := c,
we check to see whether c is small enough to fit in the immediate operand of a
compute instruction. If so, we add an entry to the dictionary indicating that uses
of vi should be replaced by uses of the constant, but we generate no code: we’ll
embed the constant directly in the appropriate instructions when we come to them.
If the constant is large, we consult the dictionary to see whether it has already been
loaded (or computed) into some other register v j; if so, we note that uses of vi
should be replaced by uses of v j. If the constant is large and not already available,
then we generate instructions to load it into vi and then note its availability with
an appropriate dictionary entry. In all cases, we create a dictionary entry for the
target register of a load, indicating whether that register (1) should be used under
its own name in subsequent instructions, (2) should be replaced by uses of some
other register, or (3) should be replaced by some small immediate constant.

For a compute instruction, vi := v j op vk , we first consult the dictionary to see
whether uses of v j or vk should be replaced by uses of some other registers or small
constants vl and vm . If both operands are constants, then we can perform the
operation at compile time, effecting constant folding. We then treat the constant
as we did for loads above: keeping a note of its value if small, or of the register in
which it resides if large. We also note opportunities to perform strength reduction
or to eliminate useless instructions. If at least one of the operands is nonconstant
(and the instruction is not useless), we consult the dictionary again to see whether
the result of the (potentially modified) computation is already available in some
register vn . This final lookup operation is keyed by a combination of the operator
op and the operand registers or constants v j (or vl) and vk (or vm). If the lookup
is successful, we add an entry to the dictionary indicating that uses of vi should be
replaced by uses of vn . If the lookup is unsuccessful, we generate an appropriate
instruction (e.g., vi := v j op vk or vi := vl op vm) in the new version of the basic
block, and add a corresponding entry to the dictionary.

As we work our way through the basic block, the dictionary provides us with
four kinds of information:

1. For each already-computed virtual register: whether it should be used under
its own name, replaced by some other register, or replaced by an immediate
constant

2. For certain variables: what register holds the (current) value

17.3.2 Value Numbering C 369

3. For certain large constants: what register holds the value
4. For some (op, arg1, arg2) triples, where argi can be a register name or a constant:

what register already holds the result

For a store instruction, x := vi , we remove any existing entry for x in the
dictionary, and add an entry indicating that x is available in vi . We also note (in
that entry) that the value of x in memory is stale. If x may be an alias for some
other variable y, we must also remove any existing entry for y from the dictionary.
(If we are certain that y is an alias for x, then we can add an entry indicating that
the value of y is available in vi .) A similar precaution, ignored in the discussion
above, applies to loads: if x may be an alias for y, and if there is an entry for y in
the dictionary indicating that the value in memory is stale, then a load instruction
vi := x must be preceded by a store to y. When we reach the end of the block, we
traverse the dictionary, generating store instructions for all variables whose values
in memory are stale. If any variables may be aliases for each other, we must take
care to generate the stores in the order in which the values were produced. After
generating the stores, we generate the branch (if any) that ends the block.

Local Code Improvement

In the process of local value numbering we automatically perform several impor-
tant operations. We identify common subexpressions (none of which occur in

DESIGN & IMPLEMENTATION

17.3 Common subexpressions
It is natural to think of common subexpressions as something that could be
eliminated at the source code level, and programmers are sometimes tempted
to do so. The following, for example,

x = a + b + c;
y = a + b + d;

could be replaced with

t = a + b;
x = t + c;
y = t + d;

Such changes do not always make the code easier to read, however, and if the
compiler is doing its job they don’t make it any faster either. Moreover numerous
examples of common subexpressions are entirely invisible in the source code.
Examples include array subscript calculations (Section 8.2.3), references to
variables in lexically enclosing scopes (Section 9.2), and references to nearby
fields in complex records (Section 8.1.3). Like the pointer arithmetic discussed
in Sidebar 8.8, hand elimination of common subexpressions, unless it makes
the code easier to read, is usually not a good idea.

C 370 Chapter 17 Code Improvement

our combinations example), allowing us to compute them only once. We also
implement constant folding and certain strength reductions. Finally, we perform
local constant and copy propagation, and eliminate redundant loads and stores:
our use of the dictionary to delay store instructions ensures that (in the absence of
potential aliases) we never write a variable twice, or write and then read it again
within the same basic block.

To increase the number of common subexpressions we can find, we may want
to traverse the syntax tree prior to linearizing it, rearranging expressions into
some sort of normal form. For commutative operations, for example, we can swap
subtrees if necessary to put operands in lexicographic order. We can then recognize
that a + b and b + a are common subexpressions. In some cases (e.g., in the context
of array address calculations, or with explicit permission from the programmer), we
may use associative or distributive rules to normalize expressions as well, though as
we noted in Section 6.1.4 such changes can in general lead to arithmetic overflow
or numerical instability. Unfortunately, straightforward normalization techniques
will fail to recognize the redundancy in a + b + c and a + c; lexicographic ordering
is simply a heuristic.

A naive approach to aliases is to assume that assignment to element i of an array
may alter element j, for any j; that assignment through a pointer to an object of
type t (in a type-safe language) may alter any variable of that type; and that a call to
a subroutine may alter any variable visible in the subroutine’s scope (including at a
minimum all globals). These assumptions are overly conservative and can greatly
limit the ability of a compiler to generate good code. More aggressive compilers
perform extensive symbolic analysis of array subscripts in order to narrow the
set of potential aliases for an array assignment. Similar analysis may be able to
determine that particular array or record elements can be treated as unaliased
scalars, making them candidates for allocation to registers. Recent years have
also seen the development of very good alias analysis techniques for pointers (see
Sidebar C 17.4).

Figure C 17.4 shows the control flow graph for our combinations subroutineEXAMPLE 17.12
Result of local redundancy
elimination

after local redundancy elimination. We have eliminated 21 of the instructions in
Figure C 17.3, all of them loads of variables or constants. Thirteen of the eliminated

DESIGN & IMPLEMENTATION

17.4 Pointer analysis
The tendency of pointers to introduce aliases is one of the reasons why Fortran
compilers have traditionally produced faster code than C compilers. Prior to
Fortran 90, the language had no pointers, and many Fortran programs are
still written without them. C programs, by contrast, tend to be pointer-rich.
Some time ago, alias analysis for pointers reached the point at which good C
compilers could rival their Fortran counterparts; it remains an active research
topic. For a survey of the field as of 2015, see the tutorial by Smaragdakis and
Balatsouras [SB15].

17.3.2 Value Numbering C 371

Block 1:
 sp := sp − 8
 v1 := r0 –– n
 n := v1
 v2 := r1 –– A
 A := v2
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 t := 1
 i := 1
 goto Block 3

Block 4:
 sp := sp + 8
 goto *lr

Block 3:
 v39 := i
 v40 := n
 v42 := v40 >> 1
 v43 := v39 <_ v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v13 := t
 v14 := n
 v16 := v14 + 1
 v17 := i
 v18 := v16 − v17
 v19 := v13 × v18
 v21 := v19 div v17
 v22 := A
 v25 := v17 << 2
 v26 := v22 + v25
 *v26 := v21
 v31 := v14 − v17
 v33 := v31 << 2
 v34 := v22 + v33
 *v34 := v21
 v38 := v17 + 1
 t := v21
 i := v38
 goto Block 3

Figure 17.4 Control flow graph for the combinations subroutine after local redundancy
elimination and strength reduction. Changes from Figure C 17.3 are shown in boldface type.

instructions are in the body of the loop (Blocks 2 and 3) where improvements are
particularly important. We have also performed strength reduction on the two
instructions that multiply a register by the constant 4 and the one that divides a
register by 2, replacing them by equivalent shifts.

3CHECK YOUR UNDERSTANDING

1. Describe several increasing levels of ‘‘aggressiveness’’ in code improvement.

2. Give three examples of code improvements that must be performed in a partic-
ular order. Give two examples of code improvements that should probably be
performed more than once (with other improvements in between).

C 372 Chapter 17 Code Improvement

3. What is peephole optimization? Describe at least four different ways in which a
peephole optimizer might transform a program.

4. What is constant folding? Constant propagation? Copy propagation? Strength
reduction?

5. What does it mean for a value in a register to be live?

6. What is a control flow graph? Why is it central to so many forms of global code
improvement? How does it accommodate subroutine calls?

7. What is value numbering? What purpose does it serve?

8. Explain the connection between common subexpressions and expression rear-
rangement.

9. Why is it not practical in general for the programmer to eliminate common
subexpressions at the source level?

17.4 Global Redundancy and Data Flow Analysis

In this section we will concentrate on the elimination of redundant loads and
computations across the boundaries between basic blocks. We will translate the
code of our basic blocks into static single assignment (SSA) form, which will allow
us to perform global value numbering. Once value numbers have been assigned,
we shall be able to perform global common subexpression elimination, constant
propagation, and copy propagation. In a compiler both the translation to SSA form
and the various global optimizations would be driven by data flow analysis. We will
go into some of the details for global optimization (specifically, for the problems of
identifying common subexpressions and useless store instructions) after a much
more informal presentation of the translation to SSA form. We will also give data
flow equations in Section C 17.5 for the calculation of reaching definitions, used
(among other things) to move invariant computations out of loops.

Global redundancy elimination can be structured in such a way that it catches
local redundancies as well, eliminating the need for a separate local pass. The global
algorithms are easier to implement and to explain, however, if we assume that a
local pass has already occurred. In particular, local redundancy elimination allows
us to assume (in the absence of aliases, which we will ignore in our discussion) that
no variable is read or written more than once in a basic block.

17.4.1 SSA Form and Global Value Numbering

Value numbering, as introduced in Section C 17.3, assigns a distinct virtual register
name to every symbolically distinct value that is loaded or computed in a given
body of code, allowing us to recognize when certain loads or computations are

17.4.1 SSA Form and Global Value Numbering C 373

redundant. The first step in global value numbering is to distinguish among the
values that may be written to a variable in different basic blocks. We accomplish
this step using static single assignment (SSA) form.

Our initial translation to medium-level IF ensured that each virtual register
was assigned a value by a unique instruction. This uniqueness was preserved by
local value numbering. Variables, however, may be assigned in more than one
basic block. Our translation to SSA form therefore begins by adding subscripts to
variable names: a different one for each distinct store instruction. This convention
makes it easier to identify global redundancies. It also explains the terminology:
each subscripted variable in an SSA program has a single static (compile time)
assignment—a single store instruction.

Following the flow of the program, we assign subscripts to variables in load
instructions, to match the corresponding stores. If the instruction v2 := x is
guaranteed to read the value of x written by the instruction x3 := v1, then we
replace v2 := x with v2 := x3 . If we cannot tell which version of x will be read,
we use a hypothetical merge function (also known as a selection function, and
traditionally represented by the Greek letter ϕ) to choose among the possible
alternatives. Fortunately, we won’t actually have to compute merge functions at
run time. Their only purpose is to help us identify possible code improvements;
we will drop them (and the subscripts) prior to target code generation.

In general, the translation to SSA form (and the identification of merge functions
in particular) requires the use of data flow analysis. We will describe the concept
of data flow in the context of global common subexpression elimination in Sec-
tion C 17.4.2. In the current subsection we will generate SSA code informally; data
flow formulations can be found in more advanced compiler texts [CT11, Sec. 9.3;
AK02, Sec. 4.4.4; App97, Sec. 19.1; Muc97, Sec. 8.11].

In the combinations subroutine (Figure C 17.4) we assign the subscript 1 toEXAMPLE 17.13
Conversion to SSA form the stores of t and i at the end of Block 1. We assign the subscript 2 to the stores of

t and i at the end of Block 2. Thus at the end of Block 1 t1 and i1 are live; at the end
of Block 2 t2 and i2 are live. What about Block 3? If control enters Block 3 from
Block 1, then t1 and i1 will be live, but if control enters Block 3 from Block 2, then
t2 and i2 will be live. We invent a merge function ϕ that returns its first argument
if control enters Block 3 from Block 1, and its second argument if control enters
Block 3 from Block 2. We then use this function to write values to new names t3
and i3 . Since Block 3 does not modify either t or i, we know that t3 and i3 will be
live at the end of the block. Moreover, since control always enters Block 2 from
Block 3, t3 and i3 will be live at the beginning of Block 2. The load of v13 in Block 2
is guaranteed to return t3 ; the loads of v17 in Block 2 and of v39 in Block 3 are
guaranteed to return i3 .

SSA form annotates the right-hand sides of loads with subscripts and merge
functions in such a way that at any given point in the program, if vi and v j were
given values by load instructions with symbolically identical right-hand sides, then
the loaded values are guaranteed to have been produced by (the same execution
of) the same prior store instruction. Because ours is a simple subroutine, only one
merge function is needed: it indicates whether control entered Block 3 from Block 1

C 374 Chapter 17 Code Improvement

Block 1:
 sp := sp − 8
 v1 := r0 –– n
 n := v1
 v2 := r1 –– A
 A := v2
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 t1 := 1
 i1 := 1
 goto Block 3

Block 4:
 sp := sp + 8
 goto *lr

Block 2:
 v13 := t3
 v14 := n
 v16 := v14 + 1
 v17 := i3
 v18 := v16 − v17
 v19 := v13 × v18
 v21 := v19 div v17
 v22 := A
 v25 := v17 << 2
 v26 := v22 + v25
 *v26 := v21
 v31 := v14 − v17
 v33 := v31 << 2
 v34 := v22 + v33
 *v34 := v21
 v38 := v17 + 1
 t2 := v21
 i2 := v38
 goto Block 3

Block 3:
 t3 := ϕ(t1, t2)
 i3 := ϕ(i1, i2)
 v39 := i3
 v40 := n
 v42 := v40 >> 1
 v43 := v39 <_ v42
 if v43 goto Block 2
 else goto Block 4

Figure 17.5 Control flow graph for the combinations subroutine, in static single assignment
(SSA) form. Changes from Figure C 17.4 are shown in boldface type.

or from Block 2. In a more complicated subroutine there could be additional merge
functions, for other blocks with more than one predecessor. SSA form for the
combinations subroutine appears in Figure C 17.5.

With flow-dependent values determined by merge functions, we are now in aEXAMPLE 17.14
Global value numbering position to perform global value numbering. As in local value numbering, the goal

is to merge any virtual registers that are guaranteed to hold symbolically equivalent
expressions.

In the local case we were able to perform a linear pass over the code, keeping a
dictionary that mapped loaded and computed expressions to the names of virtual

17.4.2 Global Common Subexpression Elimination C 375

registers that contained them. This approach does not suffice in the global case,
because the code may have cycles. The general solution can be formulated using
data flow, or obtained with a simpler algorithm [Muc97, Sec. 12.4.2] that begins by
unifying all expressions with the same top-level operator, and then repeatedly sepa-
rates expressions whose operands are distinct, in a manner reminiscent of the DFA
minimization algorithm of Section 2.2.1. In contrast to our presentation of local
value numbering, where we performed code improvements such as eliminating
redundant loads and stores, we perform only global value numbering here, leaving
further code improvements to separate dataflow analyses that build on our results.
Again, we perform the analysis for our running example informally.

We can begin by adopting the results of local value numbering for Block 1; since
this is the first basic block and local redundancies have been removed, its virtual
register names have already been merged as much as possible. In Block 2, the
second instruction loads n into v14. Since we already used v1 for n in Block 1, we
can substitute the same name here. This substitution violates, for the first time, our
assumption that every virtual register is given a value by a single static instruction.
The ‘‘violation’’ is safe, however: both occurrences of n have the same subscript
(none at all, in this case), so we know that at any given point in the code, if v1 and
v14 have both been given values, then those values are the same. We can’t (yet)
eliminate the load in Block 2, because we don’t (yet) know that Block 1 will have
executed first. For consistency we replace v14 with v1 in the third instruction of
Block 2. Then, by similar reasoning, we replace v22 with v2 in the 8th, 10th, and
14th instructions.

In Block 3 we have more replacements. In the first real instruction (v39 := i3),
we recall that the same right-hand side is loaded into v17 in Block 2. We therefore
replace v39 with v17, in both the first and fourth instructions. Similarly, we replace
v40 with v1, in both the second and third instructions. There are no changes in
Block 4.

The result of global value numbering on our combinations subroutine appears
in Figure C 17.6. In this case the only common values identified were variables
loaded from memory. In a more complicated subroutine, we would also identify
known-to-be-identical computations performed in more than one block (though
we would not yet know which, if any, were redundant). As we did with loads, we
would rename left-hand sides so that all symbolically equivalent computations
place their results in the same virtual register.

Static single assignment form is useful for a variety of code improvements. In
our discussion here we use it only for global value numbering. We will drop it in
later figures.

17.4.2 Global Common Subexpression Elimination

We have seen an informal example of data flow analysis in the construction of static
single assignment form. We will now employ a more formal example for global
common subexpression elimination. As a result of global value numbering, we

C 376 Chapter 17 Code Improvement

Block 1:
 sp := sp − 8
 v1 := r0 –– n
 n := v1
 v2 := r1 –– A
 A := v2
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 t1 := 1
 i1 := 1
 goto Block 3

Block 4:
 sp := sp + 8
 goto *lr

Block 3:
 t3 := ϕ(t1, t2)
 i3 := ϕ(i1, i2)
 v17 := i3
 v1 := n
 v42 := v1 >> 1
 v43 := v17 <– v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v13 := t3
 v1 := n
 v16 := v1 + 1
 v17 := i3
 v18 := v16 − v17
 v19 := v13 × v18
 v21 := v19 div v17
 v2 := A
 v25 := v17 << 2
 v26 := v2 + v25
 *v26 := v21
 v31 := v1 − v17
 v33 := v31 << 2
 v34 := v2 + v33
 *v34 := v21
 v38 := v17 + 1
 t2 := v21
 i2 := v38
 goto Block 3

Figure 17.6 Control flow graph for the combinations subroutine after global value numbering.
Changes from Figure C 17.5 are shown in boldface type.

know that any common subexpression will have been placed into the same virtual
register wherever it is computed. We will therefore use virtual register names to
represent expressions in the discussion below.2 The goal of global common subex-
pression elimination is to identify places in which an instruction that computes

2 As presented here, there is a one–one correspondence among SSA names, global value numbers,
and (after global value numbering has been completed) virtual register names. Other texts and
papers sometimes distinguish among these concepts more carefully, and use them for different
purposes.

17.4.2 Global Common Subexpression Elimination C 377

a value for a given virtual register can be eliminated, because the computation is
certain to already have occurred on every control path leading to the instruction.

Many instances of data flow analysis can be cast in the following framework:
(1) four sets for each basic block B, called InB , OutB , GenB , and KillB ; (2) values
for the Gen and Kill sets; (3) an equation relating the sets for any given block B;
(4) an equation relating the Out set of a given block to the In sets of its successors,
or relating the In set of the block to the Out sets of its predecessors; and (often)
(5) certain initial conditions. The goal of the analysis is to find a fixed point of the
equations: a consistent set of In and Out sets that satisfy both the equations and
the initial conditions. Some problems have a single fixed point. Others may have
more than one, in which case we usually want either the least or the greatest fixed
point (smallest or largest sets).

In the case of global common subexpression elimination, InB is the set of ex-EXAMPLE 17.15
Data flow equations for
available expressions

pressions (virtual registers) guaranteed to be available at the beginning of block B.
These available expressions will all have been set by predecessor blocks. OutB is
the set of expressions guaranteed to be available at the end of B. KillB is the set
of expressions killed in B: invalidated by assignment to one of the variables used
to calculate the expression, and not subsequently recalculated in B. GenB is the
set of expressions calculated in B and not subsequently killed in B. The data flow
equations for available expression analysis are3

OutB = GenB ∪ (InB ∖ KillB)

InB =
⋂

predecessors A of B

OutA

Our initial condition is In1 = ∅: no expressions are available at the beginning of
execution.

Available expression analysis is known as a forward data flow problem, because
information flows forward across branches: the In set of a block depends on the Out
sets of its predecessors. We shall see an example of a backward data flow problem
later in this section.

We calculate the desired fixed point of our equations in an inductive (iterative)EXAMPLE 17.16
Fixed point for available
expressions

fashion, much as we computed FIRST and FOLLOW sets in Section 2.3.3. Our
equation for InB uses intersection to insist that an expression be available on all
paths into B. In our iterative algorithm, this means that InB can only shrink with
subsequent iterations. Because we want to find as many available expressions
as possible, we therefore optimistically assume that all expressions are initially
available as inputs to all blocks other than the first; that is, InB ,B ̸=1 = {n, A, t, i, v1,
v2, v8, v9, v13, v16, v17, v18, v19, v21, v25, v26, v31, v33, v34, v38, v42, v43}.

Our Gen and Kill sets can be found in a single backward pass over each of the
basic blocks. In Block 3, for example, the last assignment defines a value for v43.

3 Set notation here is standard:
⋃

i S i indicates the union of all sets S i ;
⋂

i S i indicates the intersection
of all sets S i ; A ∖ B, pronounced ‘‘A minus B’’ indicates the set of all elements found in A but not
in B.

C 378 Chapter 17 Code Improvement

We therefore know that v43 is in Gen3. Working backward, so are v42, v1, and v17.
As we notice each of these, we also consider their impact on Kill3. Virtual register
v43 does not appear on the right-hand side of any assignment in the program (it is
not part of the expression named by any virtual register), so giving it a value kills
nothing. Virtual register v42 is part of the expression named by v43, but since
v43 is given a value later in the block (is already in Gen3), the assignment to v42
does not force v43 into Kill3. Virtual register v1 is a different story. It is part of
the expressions named by v8, v16, v31, and v42. Since v42 is already in Gen3, we
do not add it to Kill3. We do, however, put v8, v16, and v31 in Kill3. In a similar
manner, the assignment to v17 forces v18, v21, v25, and v38 into Kill3. Note that
we do not have to worry about virtual registers that depend in turn on v8, v16,
v18, v21, v25, v31, or v38: our iterative data flow algorithm will take care of that;
all we need now is one level of dependence. Stores to program variables (e.g., at
the ends of Blocks 1 and 2) kill the corresponding virtual registers.

After completing a backward scan of all four blocks, we have the following Gen
and Kill sets:

Gen1 = {v1 , v2 , v8 , v9} Kill1 = {v13 , v16 , v17 , v26 , v31 , v34 , v42}
Gen2 = {v1 , v2 , v13 , v16 , v17 , v18 , v19 , Kill2 = {v8 , v9 , v13 , v17 , v42 , v43}

v21 , v25 , v26 , v31 , v33 , v34 , v38}
Gen3 = {v1 , v17 , v42 , v43} Kill3 = {v8 , v16 , v18 , v21 , v25 , v31 , v38}
Gen4 = ∅ Kill4 = ∅

Applying the first of our data flow equations (OutB = GenB ∪ (InB ∖ KillB)) to
all blocks, we obtain

Out1 = {v1 , v2 , v8 , v9}
Out2 = {v1 , v2 , v13 , v16 , v17 , v18 , v19 , v21 , v25 , v26 , v31 , v33 , v34 , v38}
Out3 = {v1 , v2 , v9 , v13 , v17 , v19 , v26 , v33 , v34 , v42 , v43}
Out4 = {v1 , v2 , v8 , v9 , v13 , v16 , v17 , v18 , v19 , v21 , v25 , v26 , v31 , v33 , v34 , v38 , v42 , v43}

If we now apply our second equation (InB =
⋂

A OutA) to all blocks, followed
by a second iteration of the first equation, we obtain

In1 = ∅ Out1 = {v1 , v2 , v8 , v9}
In2 = {v1 , v2 , v9 , v13 , v17 , v19 , Out2 = {v1 , v2 , v13 , v16 , v17 , v18 , v19 ,

v26 , v33 , v34 , v42 , v43} v21 , v25 , v26 , v31 , v33 , v34 , v38}
In3 = {v1 , v2} Out3 = {v1 , v2 , v17 , v42 , v43}
In4 = {v1 , v2 , v9 , v13 , v17 , v19 , Out4 = {v1 , v2 , v9 , v13 , v17 , v19 ,

v26 , v33 , v34 , v42 , v43} v26 , v33 , v34 , v42 , v43}

One more iteration of each equation yields the fixed point:

17.4.2 Global Common Subexpression Elimination C 379

In1 = ∅ Out1 = {v1 , v2 , v8 , v9}
In2 = {v1 , v2 , v17 , v42 , v43} Out2 = {v1 , v2 , v13 , v16 , v17 , v18 , v19 ,

v21 , v25 , v26 , v31 , v33 , v34 , v38}
In3 = {v1 , v2} Out3 = {v1 , v2 , v17 , v42 , v43}
In4 = {v1 , v2 , v17 , v42 , v43} Out4 = {v1 , v2 , v17 , v42 , v43}

We can now exploit what we have learned. Whenever a virtual register is in theEXAMPLE 17.17
Result of global common
subexpression elimination

In set of a block, we can drop any assignment of that register in the block. In our
example subroutine, we can drop the loads of v1, v2, and v17 in Block 2, and the
load of v1 in Block 3. In addition, whenever a virtual register corresponding to
a variable is in the In set of a block, we can replace a load of that variable with a
register–register move on each of the potential paths into the block. In our example,
we can replace the load of t in Block 2 and the load of i in Block 3 (the load of i in
Block 2 has already been eliminated). To compensate, we must load v13 and v17
with the constant 1 at the end of Block 1, and move v21 into v13 and v38 into v17
at the end of Block 2. The final result appears in Figure C 17.7.

(The careful reader may note that v21 and v38 are not strictly necessary: if
we computed new values directly into v13 and v17, we could eliminate the two
register–register moves. This observation, while correct, need not be made at this
time; it can wait until we perform induction variable optimizations and register
allocation, to be described in Sections C 17.5.2 and C 17.8, respectively.)

Splitting Control Flow Edges

If the block (call it A) in which a variable is written has more than one successor,EXAMPLE 17.18
Edge splitting
transformations

only one of which (call it B) contains a redundant load, and if B has more than one
predecessor, then we need to create a new block on the arc between A and B to hold
the register–register move. This way the move will not be executed on code paths
that don’t need it. In a similar vein, if an expression is available from A but not from
B’s other predecessor, then we can move the load or computation of the expression
back into the predecessor that lacks it or, if that predecessor has more than one
successor, into a new block on the connecting arc. This move will eliminate a
redundancy on the path through A. These ‘‘edge splitting’’ transformations are
illustrated in Figure C 17.8. In general, a load or computation is said to be partially
redundant if it is a repetition of an earlier load or store on some paths through the
flow graph, but not on others. No edge splits are required in the combinations
example.

Common subexpression elimination can have a complicated effect on register
pressure. If we realize that the expression v10 + v20 has been calculated into, say,
register v30 earlier in the program, and we exploit this knowledge to replace a later
recalculation of the expression with a direct use of v30, then we may expand v30’s
live range—the span of instructions over which its value is needed. At the same
time, if v10 and v20 are not used for other purposes in the intervening region of
the program, we may shrink the range over which they are live. In a subroutine
with a high level of register pressure, a good compiler may sometimes perform the

C 380 Chapter 17 Code Improvement

Block 1:
 sp := sp − 8
 v1 := r0 –– n
 n := v1
 v2 := r1 –– A
 A := v2
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 t := 1
 i := 1
 v13 := 1
 v17 := 1
 goto Block 3

Block 4:
 sp := sp + 8
 goto *lr

Block 3:
 v42 := v1 >> 1
 v43 := v17 <_ v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v16 := v1 + 1
 v18 := v16 − v17
 v19 := v13 × v18
 v21 := v19 div v17
 v25 := v17 << 2
 v26 := v2 + v25
 *v26 := v21
 v31 := v1 − v17
 v33 := v31 << 2
 v34 := v2 + v33
 *v34 := v21
 v38 := v17 + 1
 t := v21
 i := v38
 v13 := v21
 v17 := v38
 goto Block 3

Figure 17.7 Control flow graph for the combinations subroutine after performing global
common subexpression elimination. Note the absence of the many load instructions of Fig-
ure C 17.6. Compensating register–register moves are shown in boldface type.

inverse of common subexpression elimination (known as forward substitution) in
order to shrink live ranges.

Live Variable Analysis

Constant propagation and copy propagation, like common subexpression elimina-
tion, can be formulated as instances of data flow analysis. We skip these analyses
here; none of them yields improvements in our example. Instead, we turn our
attention to live variable analysis, which is very important in our example, and
in general in any subroutine in which global common subexpression analysis has
eliminated load instructions.

Live variable analysis is the backward flow problem mentioned above. It de-
termines which instructions produce values that will be needed in the future,
allowing us to eliminate dead (useless) instructions. In our example we will con-
cern ourselves only with values written to memory and with the elimination of
dead stores. When applied to values in virtual registers as well, live variable analysis

17.4.2 Global Common Subexpression Elimination C 381

v1 := v2 + v3
a := v1

v7 := a
v7 := v4

v4 := v5 × v6
a := v4

v1 := v2 + v3

v1 := v2 + v3

v1 := v2 + v3
a := v1
v7 := v1

v4 := v5 × v6
a := v4

v1 := v2 + v3

v1 := v2 + v3

A

A
A

A

B

B
B

B

Figure 17.8 Splitting an edge of a control flow graph to eliminate a redundant load (top) or a partially redundant computation
(bottom).

can help to identify other dead instructions. (None of these arise this early in the
combinations example.)

For this instance of data flow analysis, InB is the set of variables that are live atEXAMPLE 17.19
Data flow equations for live
variables

the beginning of block B. OutB is the set of variables that are live at the end of the
block. GenB is the set of variables read in B without first being written in B. KillB
is the set of variables written in B without having been read first. The data flow
equations are

InB = GenB ∪ (OutB ∖ KillB)

OutB =
⋃

successors C of B

InC

Our initial condition is Out4 = ∅: no variables are live at the end of execution. (If
our subroutine wrote any nonlocal [e.g., global] variables, these would be initial
members of Out4.)

In comparison to the equations for available expression analysis, the roles of In
and Out have been reversed (that’s why it’s a backward problem), and the intersec-
tion operator in the second equation has been replaced by a union. Intersection
(‘‘all paths’’) problems require that information flow over all paths between blocks;
union (‘‘any path’’) problems require that it flow along some path. Further data
flow examples appear in Exercises C 17.7 and C 17.9.

In our example program, we haveEXAMPLE 17.20
Fixed point for live
variables

C 382 Chapter 17 Code Improvement

Block 1:
 v1 := r0 –– n
 v2 := r1 –– A
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 v13 := 1
 v17 := 1
 goto Block 3

Block 4:
 goto *lr

Block 3:
 v42 := v1 >> 1
 v43 := v17 <_ v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v16 := v1 + 1
 v18 := v16 − v17
 v19 := v13 × v18
 v21 := v19 div v17
 v25 := v17 << 2
 v26 := v2 + v25
 *v26 := v21
 v31 := v1 − v17
 v33 := v31 << 2
 v34 := v2 + v33
 *v34 := v21
 v38 := v17 + 1
 v13 := v21
 v17 := v38
 goto Block 3

Figure 17.9 Control flow graph for the combinations subroutine after performing live
variable analysis. Starting with Figure C 17.7, the compiler has eliminated all stores to n, A, t,
and i. It has also dropped the changes to the stack pointer that used to appear in the subroutine
prologue and epilogue: we don’t need space for local variables anymore.

Gen1 = ∅ Kill1 = {n , A , t , i}
Gen2 = ∅ Kill2 = {t , i}
Gen3 = ∅ Kill3 = ∅
Gen4 = ∅ Kill4 = ∅

Our use of union means that Out sets can only grow with each iteration, so we
begin with OutB = ∅ for all blocks B (not just B4). One iteration of our data flow
equations gives us InB = GenB and OutB = ∅ for all blocks B. But since GenB = ∅
for all B, this is our fixed point! Common subexpression elimination has left us
with a situation in which none of our parameters or local variables is live; all of
the stores of A, n, t, and i can be eliminated. Moreover, now that computation
works entirely in registers, we don’t even need a stack frame: we can eliminate the
updates of the stack pointer in the subroutine prologue and epilogue, leaving us
with the code in Figure C 17.9.

Aliases must be treated in a conservative fashion in both common subexpression
elimination and live variable analysis. If a store instruction might modify variable

17.5 Loop Improvement I C 383

x, then for purposes of common subexpression elimination we must consider the
store as killing any expression that depends on x. If a load instruction might access
x, and x is not written earlier in the block containing the load, then x must be
considered live at the beginning of the block. In our example we have assumed that
the compiler is able to verify that, as a reference parameter, array A cannot alias
either value parameter n or local variables t and i.

3CHECK YOUR UNDERSTANDING

10. What is static single assignment (SSA) form? Why is SSA form needed for global
value numbering, but not for local value numbering?

11. What are merge functions in the context of SSA form?

12. Give three distinct examples of data flow analysis. Explain the difference be-
tween forward and backward flow. Explain the difference between all-paths
and any-path flow.

13. Explain the role of the In, Out, Gen, and Kill sets common to many examples
of data flow analysis.

14. What is a partially redundant computation? Why might an algorithm to elimi-
nate partial redundancies need to split an edge in a control flow graph?

15. What is an available expression?

16. What is forward substitution?

17. What is live variable analysis? What purpose does it serve?

18. Describe at least three instances in which code improvement algorithms must
consider the possibility of aliases.

17.5 Loop Improvement I

Because programs tend to spend most of their time in loops, code improvements
that improve the speed of loops are particularly important. In this section we
consider two classes of loop improvements: those that move invariant compu-
tations out of the body of a loop and into its header, and those that reduce the
amount of time spent maintaining induction variables. In Section C 17.7 we will
consider transformations that improve instruction scheduling by restructuring a
loop body to include portions of more than one iteration of the original loop, and
that manipulate multiply nested loops to improve cache performance or increase
opportunities for parallelization.

C 384 Chapter 17 Code Improvement

17.5.1 Loop Invariants

A loop invariant is an instruction (i.e., a load or calculation) in a loop whose result
is guaranteed to be the same in every iteration.4 If a loop is executed n times and
we are able to move an invariant instruction out of the body and into the header
(saving its result in a register for use within the body), then we will eliminate n− 1
calculations from the program, a potentially significant savings.

In order to tell whether an instruction is invariant, we need to identify the bodies
of loops, and we need to track the locations at which operand values are defined.
The first task—identifying loops—is easy in a language that relies exclusively on
structured control flow: we simply save appropriate markers when linearizing the
syntax tree. In a language with goto statements we may need to construct (recover)
the loops from a less structured control flow graph.

Tracking the locations at which an operand may have been defined amounts to
the problem of reaching definitions. Formally, we say an instruction that assigns
a value v into a location (variable or register) l reaches a point p in the code if
v may still be in l at p. Like the conversion to static single assignment form,EXAMPLE 17.21

Data flow equations for
reaching definitions

considered informally in Section C 17.4.1, the problem of reaching definitions can
be structured as a set of forward, any-path data flow equations. We let GenB be the
set of final assignments in block B (those that are not overwritten later in B). For
each assignment in B we also place in KillB all other assignments (in any block) to
the same location. Then we have

OutB = GenB ∪ (InB ∖ KillB)

InB =
⋃

predecessors C of B

OutC

Our initial condition is that In1 = ∅: no definitions in the function reach its entry
point. Given InB (the set of reaching definitions at the beginning of the block),
we can determine the reaching definitions of all values used within B by a simple
linear perusal of the code. Because our union operator will iteratively grow the sets
of reaching definitions, we begin our computation with InB = ∅ for all blocks B
(not just B1).

DESIGN & IMPLEMENTATION

17.5 Loop invariants
Many loop invariants arise from address calculations, especially for arrays. Like
the common subexpressions discussed in Sidebar C 17.3, they are often not
explicit in the program source, and thus cannot be hoisted out of loops by
handwritten optimization.

4 Note that this use of the term is unrelated to the notion of loop invariants in axiomatic semantics
(discussed under ‘‘Assertions’’ in Section 4.4).

17.5.2 Induction Variables C 385

Given reaching definitions, we define an instruction to be a loop invariant if each
of its operands (1) is a constant, (2) has reaching definitions that all lie outside the
loop, or (3) has a single reaching definition, even if that definition is an instruction
d located inside the loop, so long as d is itself a loop invariant. (If there is more
than one reaching definition for a particular variable, then we cannot be sure of
invariance unless we know that all definitions will assign the same value, something
that most compilers do not attempt to infer.) As in previous analyses, we begin
with the obvious cases and proceed inductively until we reach a fixed point.

In our combinations example, visual inspection of the code reveals two loopEXAMPLE 17.22
Result of hoisting loop
invariants

invariants: the assignment to v16 in Block 2 and the assignment to v42 in Block 3.
Moving these invariants out of the loop (and dropping the dead stores and stack
pointer updates of Figure C 17.7) yields the code of Figure C 17.10.

In the new version of the code, v16 and v42 will be calculated even if the loop
is executed zero times. In general this precalculation may not be a good idea. If an
invariant calculation is expensive and the loop is not in fact executed, then we may
have made the program slower. Worse, if an invariant calculation may produce a
run-time error (e.g., divide by zero), we may have made the program incorrect.
A safe and efficient general solution is to insert an initial test for zero iterations
before any invariant calculations; we consider this option in Exercise C 17.4. In the
specific case of the combinations subroutine, our more naive transformation is
both safe and (in the common case) efficient.

17.5.2 Induction Variables

An induction variable (or register) is one that takes on a simple progression of values
in successive iterations of a loop. We will confine our attention here to arithmetic
progressions; more elaborate examples appear in Exercises C 17.11 and C 17.12.
Induction variables commonly appear as loop indices, subscript computations,
or variables incremented or decremented explicitly within the body of the loop.
Induction variables are important for two main reasons:

They commonly provide opportunities for strength reduction, most notably by
replacing multiplication with addition. For example, if i is a loop index variable,EXAMPLE 17.23

Induction variable strength
reduction

DESIGN & IMPLEMENTATION

17.6 Control flow analysis
Most of the loops in a modern language, with structured control flow, correspond
directly to explicit constructs in the syntax tree. A few may be implicit; examples
include the loops required to initialize or copy large records or subroutine
parameters, or to capture tail recursion. For older languages, the recovery of
structure depends on a technique known as control flow analysis. A detailed
treatment can be found in standard compiler texts [AK02, Sec. 4.5; App97,
Sec. 18.1; Muc97, Chap. 7]; we do not discuss it further here.

C 386 Chapter 17 Code Improvement

Block 1:
 v1 := r0 –– n
 v2 := r1 –– A
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 v13 := 1 –– t
 v17 := 1 –– i
 v16 := v1 + 1
 v42 := v1 >> 1
 goto Block 3

Block 4:
 goto *lr

Block 3:
 v43 := v17 <_ v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v18 := v16 − v17
 v19 := v13 × v18
 v21 := v19 div v17
 v25 := v17 << 2
 v26 := v2 + v25
 *v26 := v21
 v31 := v1 − v17
 v33 := v31 << 2
 v34 := v2 + v33
 *v34 := v21
 v38 := v17 + 1
 v13 := v21
 v17 := v38
 goto Block 3

Figure 17.10 Control flow graph for the combinations subroutine after moving the invariant
calculations of v16 and v42 (shown in boldface type) out of the loop. We have also dropped
the dead stores of Figure C 17.7, and have eliminated the stack space for t and i, which now
reside entirely in registers.

then expressions of the form t := k × i + c for i > a can be replaced by t i := t i−1
+ k, where ta = k × a + c.
They are commonly redundant: instead of keeping several induction variables
in registers across all iterations of the loop, we can often keep a smaller number
and calculate the remainder from those when needed (assuming the calcula-
tions are sufficiently inexpensive). The result is often a reduction in register
pressure with no increase—and sometimes a decrease—in computation cost.
In particular, after strength-reducing other induction variables, we can oftenEXAMPLE 17.24

Induction variable
elimination

eliminate the loop index variable itself, with an appropriate change to the end
test (see Figure C 17.11 for an example).

The algorithms required to identify, strength-reduce, and possibly eliminate
induction variables are more or less straightforward, but fairly tedious [AK02,
Sec. 4.5; App97, Sec. 18.3; Muc97, Chap. 14]; we do not present the details here.
Similar algorithms can be used to eliminate array and subrange bounds checks in
many applications.

17.5.2 Induction Variables C 387

A : array [1..n] of record
key : integer
// other stuff

for i in 1..n
A[i].key := 0

(a)

v1 := 1
v2 := n
v3 := sizeof(record)
v5 := &A

L: ∗v5 := 0
v5 := v5 + v3
v1 := v1 + 1
v7 := v1 ≤ v2
if v7 goto L

(c)

v1 := 1
v2 := n
v3 := sizeof(record)
v4 := &A − v3

L: v5 := v1 × v3
v6 := v4 + v5
∗v6 := 0
v1 := v1 + 1
v7 := v1 ≤ v2
if v7 goto L

(b)

v2 := &A + (n−1) × sizeof(record)
–– may take >1 instructions

v3 := sizeof(record)
v5 := &A

L: ∗v5 := 0
v5 := v5 + v3
v7 := v5 ≤ v2
if v7 goto L

(d)

Figure 17.11 Code improvement of induction variables. High-level pseudocode source is
shown in (a). Target code prior to induction variable optimizations is shown in (b). In (c) we have
performed strength reduction on v5, the array index, and eliminated v4, at which point v5 no
longer depends on v1 (i). In (d) we have modified the end test to use v5 instead of v1, and have
eliminated v1.

For our combinations example, the code resulting from induction variable op-EXAMPLE 17.25
Result of induction variable
optimization

timizations appears in Figure C 17.12. Two induction variables—the array pointers
v26 and v34—have undergone strength reduction, eliminating the need for v25,
v31, and v33. Similarly v18 has been made independent of v17, eliminating the
need for v16. A fifth induction variable—v38—has been eliminated by replacing
its single use (the right-hand side of a register–register move) with the addition that
computed it. We assume that a repeat of local redundancy elimination in Block 1
has allowed the initialization of v34 to capitalize on the value known to reside in
v9.

For presentation purposes, we have also calculated the division operation di-
rectly into v13, allowing us to eliminate v21 and its later assignment into v13. A
real compiler would probably not make this change until the register allocation
phase of compilation, when it would verify that the previous value in v13 is dead
at the time of the division (v21 is not an induction variable; its progression of
values is not sufficiently simple). Making the change now eliminates the last redun-

C 388 Chapter 17 Code Improvement

Block 1:
 v1 := r0 –– n
 v2 := r1 –– A
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 v13 := 1 –– t
 v17 := 1 –– i
 v42 := v1 >> 1
 v26 := v2 + 4
 v34 := v9 − 4
 v18 := v1
 goto Block 3

Block 4:
 goto *lr

Block 3:
 v43 := v17 <_ v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v19 := v13 × v18
 v13 := v19 div v17
 *v26 := v13
 *v34 := v13
 v17 := v17 + 1
 v26 := v26 + 4
 v34 := v34 − 4
 v18 := v18 − 1
 goto Block 3

Figure 17.12 Control flow graph for the combinations subroutine after optimizing induction
variables. Registers v26 and v34 have undergone strength reduction, allowing v25, v31, and v33
to be eliminated. Registers v38 and v21 have been merged into v17 and v13. The update to
v18 has also been simplified, allowing v16 to be eliminated.

dant instruction in the block, and allows us to discuss instruction scheduling in
comparative isolation from other issues.

17.6 Instruction Scheduling

In the example compiler structure of Figure C 17.1, the next phase after loop opti-
mization is target code generation. As noted in Chapter 15, this phase linearizes the
control flow graph and replaces the instructions of the medium-level intermediate
form with target machine instructions. The replacements are often driven by an
automatically generated pattern-matching algorithm. We will continue to employ
our pseudo-assembly ‘‘instruction set,’’ so linearization will be the only change we
see. Specifically, we will assume that the blocks of the program are concatenated in
the order suggested by their names. Control will ‘‘fall through’’ from Block 2 to
Block 3, and from Block 3 to Block 4 in the last iteration of the loop.

We will perform two rounds of instruction scheduling separated by register
allocation. Given our use of pseudo-assembly, we won’t consider peephole optimiza-
tion in any further detail. In Section C 17.7, however, we will consider additional
forms of code improvement for loops that could be applied prior to target code
generation. We delay discussion of these because the need for them will be clearer
after considering instruction scheduling.

17.6 Instruction Scheduling C 389

On a pipelined machine—particularly one that always executes instructions
in program order—performance depends critically on the extent to which the
compiler is able to keep the pipeline full. As explained in Section C 5.5.1, delays
may result when an instruction (1) needs a functional unit still in use by an ear-
lier instruction, (2) needs data still being computed by an earlier instruction, or
(3) cannot even be selected for execution until the outcome or target of a branch
has been determined. In this section we consider cases (1) and (2), which can
be addressed by reordering instructions within a basic block. A good solution to
(3) requires branch prediction, generally with hardware assist. A compiler can
solve the subproblem of filling branch delays in a more or less straightforward
fashion [Muc97, Sec. 17.1.1].

If we examine the body of the loop in our combinations example, we findEXAMPLE 17.26
Remaining pipeline delays that the optimizations described thus far have transformed Block 2 from the 30

instruction sequence of Figure C 17.3 into the eight-instruction sequence of Fig-
ure C 17.12 (not counting the final gotos). Unfortunately, on a pipelined machine
without instruction reordering, this code is still distinctly suboptimal. In particu-
lar, the results of the second and third instructions are used immediately, but the
results of multiplies and divides are commonly not available for several cycles. If
we assume four-cycle delays, then our block will take 16 cycles to execute.

Dependence Analysis

To schedule instructions to make better use of the pipeline, we first arrange them
into a directed acyclic graph (DAG), in which each node represents an instruction,
and each arc represents a dependence,5 as described in Section C 5.5.1. Most arcs
will represent flow dependences, in which one instruction uses a value produced
by a previous instruction. A few will represent anti-dependences, in which a later
instruction overwrites a value read by a previous instruction. In our example,
these will correspond to updates of induction variables. If we were performing
instruction scheduling after architectural register allocation, then uses of the same
register for independent values could increase the number of anti-dependences,
and could also induce so-called output dependences, in which a later instruction
overwrites a value written by a previous instruction. Anti- and output dependences
can be hidden on many machines by hardware register renaming (Section C 5.4.3).

Because common subexpression analysis has eliminated all of the loads andEXAMPLE 17.27
Value dependence DAG stores of i, n, and t in the combinations subroutine, and because there are no

loads of elements of A (only stores), dependence analysis in our example will be
dealing solely with values in registers. In general we should need to deal with values
in memory as well, and to rely on alias analysis to determine when two instructions
might access the same location, and therefore share a dependence. On a target

5 What we are discussing here is a dependence DAG. It is related to, but distinct from, the expression
DAG mentioned in Section C 17.3. In particular, the dependence DAG is constructed after the
assignment of virtual registers to expressions, and its nodes represent instructions, rather than
variables and operators.

C 390 Chapter 17 Code Improvement

Block 2: Scheduled:

Block 3:

1. v19 := v13 × v18
 —
 —
 —
 —
2. v13 := v19 div v17
 —
 —
 —
 —
3. *v26 := v13
4. *v34 := v13
5. v17 := v17 + 1
6. v26 := v26 + 4
7. v34 := v34 − 4
8. v18 := v18 − 1
 −− fall through to Block 3

v19 := v13 × v18
v18 := v18 − 1
—
—
—
v13 := v19 div v17
v17 := v17 + 1
—
—
—

*v26 := v13

*v34 := v13
v26 := v26 + 4
v34 := v34 − 4

 (same)
 v43 := v17 <_ v42
 if v43 goto Block 2
 −− else fall through to Block 4

1
1

3 2 2 8

4 565 43

8 77 6

Figure 17.13 Dependence DAG for Block 2 of Figure C 17.12, together with pseudocode for
the entire loop, both before (left) and after (right) instruction scheduling. Circled numbers in
the DAG correspond to instructions in the original version of the loop. Smaller adjacent numbers
give the schedule order in the new loop. Solid arcs indicate flow dependences; dashed arcs
indicate anti-dependences. Double arcs indicate pairs of instructions that must be separated by
four additional instructions in order to avoid pipeline delays on our hypothetical machine. Delays
are shown explicitly in Block 2. Unless we modify the array indexing code (Exercise C 17.20),
only two instructions can be moved.

machine with condition codes (i.e., most machines today—see Section C 5.3), we
should need to model these explicitly, tracking flow, anti-, and output dependences.

The dependence DAG for Block 2 of our combinations example appears in
Figure C 17.13. In this case the DAG turns out to be a tree. It was generated
by examining the code from top to bottom, linking each instruction i to each
subsequent instruction j such that j reads a register written by i (solid arcs) or
writes a register read by i (dashed arcs).

Any topological sort of a dependence DAG (i.e., any enumeration of the nodes
in which each node appears before its children) will represent a correct schedule.
Ideally we should like to choose a sort that minimizes overall delay. As with many
aspects of code improvement, this task is NP-hard, so practical techniques rely
upon heuristics.

To capture timing information, we define a function latency(i , j) that returns
the number of cycles that must elapse between the scheduling of instructions i

17.6 Instruction Scheduling C 391

and j if j is to run after i in the same pipeline without stalling. (To maintain
machine independence, this portion of the code improver must be driven by
tables of machine characteristics; those characteristics must not be ‘‘hard-coded.’’)
Nontrivial latencies can result from data dependences or from conflicts for use of
some physical resource, such as an incompletely pipelined functional unit. We will
assume in our example that all units are fully pipelined, so all latencies are due to
data dependences.

We now traverse the DAG from the roots down to the leaves. At each step we
first determine the set of candidate nodes: those for which all parents have been
scheduled. For each candidate i we then use the latency function with respect to
already-scheduled nodes to determine the earliest time at which i could execute
without stalling. We also precalculate the maximum over all paths from i to a leaf
of the sums of the latencies on arcs; this gives us a lower bound on the time that will
be required to finish the basic block after i has been scheduled. In our examples
we will use the following three heuristics to choose among candidate nodes:

1. Favor nodes that can be started without stalling.
2. If there is a tie, favor nodes with the maximum delay to the end of the block.
3. If there is still a tie, favor the node that came first in the original source code

(this strategy leads to more intuitive assembly language, which can be helpful in
debugging).

Other possible scheduling heuristics include:

Favor nodes that have a large number of children in the DAG (this increases
flexibility for future iterations of the scheduling algorithm).
Favor nodes that are the final use of a register (this reduces register pressure).
If there are multiple pipelines, favor nodes that can use a pipeline that has not
received an instruction recently.

If our target machine has multiple pipelines, then we must keep track for each
instruction of the pipeline we think it will use, so we can distinguish between
candidates that can start in the current cycle and those that cannot start until the
next. (Imprecise machine models, cache misses, or other unpredictable delays may
cause our guess to be wrong some of the time.)

Unfortunately, our example DAG leaves very little room for choice. The onlyEXAMPLE 17.28
Result of instruction
scheduling

possible improvements are to move Instruction 8 into one of the multiply or divide
delay slots and Instruction 5 into one of the divide delay slots, reducing the total
cycle count of Block 2 from 16 to 14. If we assume (1) that our target machine
correctly predicts a backward branch at the bottom of the loop, and (2) that we can
replicate the first instruction of Block 2 into a nullifying delay slot of the branch,
then we incur no additional delays in Block 3 (except in the last iteration). The
overall duration of the loop is therefore 18 cycles per iteration before scheduling, 16
cycles per iteration after scheduling—an improvement of 11%. In Section C 17.7 we
will consider other versions of the block, in which rescheduling yields significantly
faster code.

C 392 Chapter 17 Code Improvement

As noted near the end of Section C 17.1, we shall probably want to repeat instruc-
tion scheduling after global code improvement and register allocation. If there are
times when the number of virtual registers with useful values exceeds the number
of architectural registers on the target machine, then we shall need to generate code
to spill some values to memory and load them back in again later. Rescheduling
will be needed to handle any delays induced by the loads.

3CHECK YOUR UNDERSTANDING

19. What is a loop invariant? A reaching definition?

20. Why might it sometimes be unsafe to hoist an invariant out of a loop?

21. What are induction variables? What is strength reduction?

22. What is control flow analysis? Why is it less important than it used to be?

23. What is register pressure? Register spilling?

24. Is instruction scheduling a machine-independent code improvement tech-
nique? Explain.

25. Describe the creation and use of a dependence DAG. Explain the distinctions
among flow, anti-, and output dependences.

26. Explain the tension between instruction scheduling and register allocation.

27. List several heuristics that might be used to prioritize instructions to be sched-
uled.

17.7 Loop Improvement II

As noted in Section C 17.5, code improvements that improve the speed of loops
are particularly important, because loops are where most programs spend most
of their time. In this section we consider transformations that improve instruc-
tion scheduling by restructuring a loop body to include portions of more than
one iteration of the original loop, and that manipulate multiply nested loops to
improve cache performance or increase opportunities for parallelization. Extensive
coverage of loop transformations and dependence theory can be found in Allen
and Kennedy’s text [AK02].

17.7.1 Loop Unrolling and Software Pipelining

Loop unrolling is a transformation that embeds two or more iterations of a source-
level loop in a single iteration of a new, longer loop, allowing the scheduler to
intermingle the instructions of the original iterations. If we unroll two iterations ofEXAMPLE 17.29

Result of loop unrolling

17.7.1 Loop Unrolling and Software Pipelining C 393

our combinations example we obtain the code of Figure C 17.14. We have used
separate names (here starting with the letter ‘t’) for registers written in the initial
half of the loop. This convention minimizes anti- and output dependences, giving
us more latitude in scheduling. In an attempt to minimize loop overhead, we have
also recognized that the array pointer induction variables (v26 and v34) need only
be updated once in each iteration of the loop, provided that we use displacement
addressing in the second set of store instructions. The new instructions added to
the end of Block 1 cover the case in which n div 2, the number of iterations of the
original loop, is not an even number.

Again assuming that the branch in Block 3 can be scheduled without delays, the
total time for our unrolled loop (prior to scheduling) is 32 cycles, or 16 cycles per
iteration of the original loop. After scheduling, this number is reduced to 12 cycles
per iteration of the original loop. Unfortunately, eight cycles (four per original
iteration) are still being lost to stalls.

If we unroll the loop three times instead of two (see Exercise C 17.21), we canEXAMPLE 17.30
Result of software
pipelining

bring the cost (with rescheduling) down to 11.3 cycles per original iteration, but
this is not much of an improvement. The basic problem is illustrated in the top half
of Figure C 17.15. In the original version of the loop, the two store instructions
cannot begin until after the divide delay. If we unroll the loop, then instructions
of the internal iterations can be intermingled, but six cycles of ‘‘shut-down’’ cost
(four delay slots and two stores) are still needed after the final divide.

A software-pipelined version of our combinations subroutine appears sche-
matically in the bottom half of Figure C 17.15, and as a control flow graph in
Figure C 17.16. The idea is to build a loop whose body comprises portions of
several consecutive iterations of the original loop, with no internal start-up or
shut-down cost. In our example, each iteration of the software-pipelined loop
contributes to three separate iterations of the original loop. Within each new
iteration (shown between vertical bars) nothing needs to wait for the divide to
complete. To avoid delays, we have altered the code in several ways. First, because
each iteration of the new loop contributes to several iterations of the original loop,
we must ensure that there are enough iterations to run the new loop at least once
(this is the purpose of the test in the new Block 1). Second, we have preceded and
followed the loop with code to ‘‘prime’’ and ‘‘flush’’ the ‘‘pipeline’’: to execute the
early portions of the first iteration and the final portions of the last few. As we did
when unrolling the loop, we use a separate name (t13 in this case) for any register
written in the new ‘‘pipeline flushing’’ code. Third, to minimize the amount of
priming required we have initialized v26 and v34 one slot before their original
positions, so that the first iteration of the pipelined loop can ‘‘update’’ them as part
of a ‘‘zero-th’’ original iteration. Finally, we have dropped the initialization of v13
in Block 1: our priming code has left that register dead at the end of the block.
(Live variable analysis on virtual registers could have been used to discover this
fact.)

Both the original and pipelined versions of the loop carry five nonconstant values
across the boundary between iterations, but one of these has changed identity:
whereas the original loop carried the result of the divide around to the next multiply

C 394 Chapter 17 Code Improvement

32 51 81

79 98 43 46 1413

1211 1010 7

1413 1211

6

5 2

… –– code from Block 1, figure 16.11
v44 := v42 & 01
if !v44 goto Block 3
–– else fall through to Block 1a

*v26 := 1

*v34 := 1
v17 := 2
v26 := v26 + 4
v34 := v34 − 4
v18 := v18 − 1
goto Block 3

t19 := v13 × v18
—
—
—
—
t13 := t19 div v17
—
—
—
—
*v26 := t13

*v34 := t13
t17 := v17 + 1
v26 := v26 + 8
v34 := v34 − 8
t18 := v18 − 1
v19 := t13 × t18
—
—
—
—
v13 := v19 div t17
—
—
—
—
*(v26−4) := v13

*(v34+4) := v13
v17 := t17 + 1
v18 := t18 − 1
–– fall through to Block 3

v43 := v17 <_ v42
if v43 goto Block 2
–– else fall through to Block 4

1.

2.

3.
4.
5.
6.
7.
8.
9.

10.

11.
12.
13.
14.

Block 1:

Block 1a:

Block 2:

Block 3:

Scheduled:
t19 := v13 × v18
t18 := v18 − 1
t17 := v17 + 1
v18 := t18 − 1
—
t13 := t19 div v17
v17 := t17 + 1
—
—
—
v19 := t13 × t18

*v26 := t13

*v34 := t13
v26 := v26 + 8
v34 := v34 − 8
v13 := v19 div t17
—
—
—
—

*(v26−4) := v13

*(v34+4) := v13

 (same)

Figure 17.14 Dependence DAG for Block 2 of the combinations subroutine after unrolling
two iterations of the body of the loop. Also shown is linearized pseudocode for the entire loop,
both before (left) and after (right) instruction scheduling. New instructions added to the end of
Block 1 cover the case in which the number of iterations of the original loop is not a multiple of
two.

17.7.1 Loop Unrolling and Software Pipelining C 395

v13

v17

v18

v26

v34

v13

v17

v18

v26
v34

mul div

sub

mul v19 mul divdiv

sto

sto

sto

sto

sto

sto

add

add

add

add

sub

sub

add

sub

sub

mul div

sto

sto

add

add

sub

sub

mul div

sub

sto

sto
add

add

sub

Figure 17.15 Software pipelining. The top diagram illustrates the execution of the original (nonpipelined) loop. In the bottom
diagram, each iteration of the original loop has been spread across three iterations of the pipelined loop. Iterations of the original
loop are enclosed in a dashed-line box; iterations of the pipelined loop are separated by solid vertical lines. In the bottom
diagram we have also shown the code to prime the pipeline prior to the first iteration, and to flush it after the last.

in register v13, the pipelined loop carries the result of the multiply forward to the
divide in register v19. In more complicated loops it may be necessary to carry two
or even three versions of a single register (corresponding to two or more iterations
of the original loop) across the boundary between iterations of the pipelined loop.
We must invent new virtual registers (similar to the new t13 and to the t registers
in the unrolled version of the combinations example) to hold the extra values. In
such a case software pipelining has the side effect of increasing register pressure.

Each of the instructions in the loop of the pipelined version of the combina-
tions subroutine can proceed without delay. The total number of cycles per
iteration has been reduced to 10. We can do even better if we combine loop
unrolling and software pipelining. For example, by embedding two multiply–divide
pairs in each iteration (drawn, with their accompanying instructions, from four
iterations of the original loop, rather than just three), we can update the array

C 396 Chapter 17 Code Improvement

Block 1:
 v1 := r0 –– n
 v2 := r1 –– A
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 v17 := 1 –– i1
 v42 := v1 >> 1
 v26 := v2
 v34 := v9
 v18 := v1 –– (n+1−i1)
 v19 := v1
 –– t1 = t0 × (n+1−i1)
 v44 := v42 = 0
 if v44 goto Block 4
 else goto Block 3

Block 4:
 goto *lr

Block 4a:
 t13 := v19 div v17
 *(v26+4) := t13
 *(v34−4) := t13
 goto Block 4

Block 2 (no delays!):
 v13 := v19 div v17
 v17 := v17 + 1
 v18 := v18 − 1
 v26 := v26 + 4
 v34 := v34 − 4
 v19 := v13 × v18
 *v26 := v13
 *v34 := v13
 goto Block 3

Block 3:
 v43 := v17 < v42
 if v43 goto Block 2
 else goto Block 4a

Figure 17.16 Control flow graph for the combinations subroutine after software pipelining.
The additional code and test at the end of Block 1, the change to the test in Block 3 (< instead
of ≤), and the new block (4a) make sure that there are enough iterations to accommodate the
pipeline, prime it with the beginnings of the initial iteration, and flush the end of the final iteration.
Suffixes on variable names in the comments in Block 1 refer to loop iterations: t1 is the value of
t in the first iteration of the loop; t0 is a ‘‘zero-th’’ value used to prime the pipeline.

pointers and check the termination condition half as often, for a net of only eight
cycles per iteration of the original loop (see Exercise C 17.22).

To summarize, loop unrolling serves to reduce loop overhead, and can also
increase opportunities for instruction scheduling. Software pipelining does a better
job of facilitating scheduling, but does not address loop overhead. A reasonable
code improvement strategy is to unroll loops until the per-iteration overhead falls
below some acceptable threshold of the total work, then employ software pipelining
if necessary to eliminate scheduling delays.

17.7.2 Loop Reordering

The code improvement techniques that we have considered thus far have served
two principal purposes: to eliminate redundant or unnecessary instructions, and to

17.7.2 Loop Reordering C 397

minimize stalls on a pipelined machine. Two other goals have become increasingly
important over the years. First, as improvements in processor speed have out-
stripped improvements in memory latency, it has become increasingly important
to minimize cache misses. Second, for parallel machines, it has become important
to identify sections of code that can execute concurrently. As with other optimiza-
tions, the largest benefits come from changing the behavior of loops. We touch on
some of the issues here; suggestions for further reading can be found at the end of
the chapter.

Cache Optimizations

Probably the simplest example of cache optimization can be seen in code thatEXAMPLE 17.31
Loop interchange traverses a multidimensional matrix (array):

for i := 1 to n
for j := 1 to n

A[i, j] := 0

If A is laid out in row-major order, and if each cache line contains m elements of
A, then this code will suffer n2/m cache misses. On the other hand, if A is laid
out in column-major order, and if the cache is too small to hold n lines of A, then
the code will suffer n2 misses, fetching the entire array from memory m times.
The difference can have an enormous impact on performance. A loop-reordering
compiler can improve this code by interchanging the nested loops:

for j := 1 to n
for i := 1 to n

A[i, j] := 0

In more complicated examples, interchanging loops may improve locality of
reference in one array but worsen it in others. Consider this code to transpose aEXAMPLE 17.32

Loop tiling (blocking) two-dimensional matrix:

for j := 1 to n
for i := 1 to n

A[i, j] := B[j, i]

If A and B are laid out the same way in memory, one of them will be accessed
along cache lines, but the other will be accessed across them. In this case we may
improve locality of reference by tiling or blocking the loops:

for it := 1 to n by b
for jt := 1 to n by b

for i := it to min(it + b − 1, n)
for j := jt to min(jt + b − 1, n)

A[i, j] := B[j, i]

C 398 Chapter 17 Code Improvement

Figure 17.17 Tiling (blocking) of a matrix operation. As long as one tile of A and one tile of B
can fit in the cache simultaneously, only one access in m will cause a cache miss (where m is the
number of elements per cache line).

Here the min calculations cover the possibility that b does not divide n evenly. They
can be dropped if n is known to be a multiple of b. Alternatively, if we are willing
to replicate the code inside the innermost loop, then we can generate different code
for the final iteration of each loop (Exercise C 17.25).

The new code iterates over b × b blocks of A and B, one in row-major order,
the other in column-major order, as shown in Figure C 17.17. If we choose b
to be a multiple of m such that the cache can hold two b × b blocks of data
simultaneously, then both A and B will suffer only one cache miss per m array
elements, fetching everything from memory exactly once.6 Tiling is useful in a
wide variety of algorithms on multidimensional arrays. Exercise C 17.23 considers
matrix multiplication.

Two other transformations that may sometimes improve cache locality are loop
distribution (also called fission or splitting), and its inverse, loop fusion (also known
as jamming). Distribution splits a single loop into multiple loops, each of which
contains some fraction of the statements of the original loop. Fusion takes separate
loops and combines them.

Consider, for example, the following code to reorganize a pair of arrays:EXAMPLE 17.33
Loop distribution

for i := 0 to n−1
A[i] := B[M[i]];
C[i] := D[M[i]];

6 Although A is being written, not read, the hardware will fetch each line of A from memory on
the first write to the line, so that the single modified element can be updated within the cache.
The hardware has no way to know that the entire line will be modified before it is written back to
memory.

17.7.2 Loop Reordering C 399

Here M defines a mapping from locations in B or D to locations in A or C. If either
B or D, but not both, can fit into the cache at once, then we may get faster code
through distribution:

for i := 1 to n
A[i] := B[M[i]];

for i := 1 to n
C[i] := D[M[i]];

On the other hand, in the following code, separate loops may lead to poorer locality:EXAMPLE 17.34
Loop fusion

for i := 1 to n
A[i] := A[i] + c

for i := 1 to n
if A[i] < 0 then A[i] := 0

If A is too large to fit in the cache in its entirety, then these loops will fetch the
entire array from memory twice. If we fuse them, however, we need only fetch A
once:

for i := 1 to n
A[i] := A[i] + c
if A[i] < 0 then A[i] := 0

If two loops do not have identical bounds, it may still be possible to fuse them if
we transform induction variables or peel some constant number of iterations off of
one of the loops.

Loop distribution may serve to facilitate other transformations (e.g., loop inter-EXAMPLE 17.35
Obtaining a perfect loop
nest

change) by transforming an ‘‘imperfect’’ loop nest into a ‘‘perfect’’ one:

for i := 1 to n
A[i] := A[i] + c
for j := 1 to n

B[i, j] := B[i, j] × A[i]

This nest is called imperfect because the outer loop contains more than just the
inner loop. Distribution yields two outermost loops:

for i := 1 to n
A[i] := A[i] + c

for i := 1 to n
for j := 1 to n

B[i, j] := B[i, j] × A[i]

The nested loops are now perfect, and can be interchanged if desired.
In keeping with our earlier discussions of loop optimizations, we note that

loop distribution can reduce register pressure, while loop fusion can reduce loop
overhead.

C 400 Chapter 17 Code Improvement

Loop Dependences

When reordering loops, we must be extremely careful to respect all data depen-
dences. Of particular concern are so-called loop-carried dependences, which con-
strain the orders in which iterations can occur. Consider, for example, the following:EXAMPLE 17.36

Loop-carried dependences
for i := 2 to n

for j := 1 to n−1
A[i, j] := A[i, j] − A[i−1, j+1]

Here the calculation of A[i, j] in iteration (i , j) depends on the value of A[i−1, j+1],
which was calculated in iteration (i−1, j+1). This dependence is often represented
by a diagram of the iteration space:

1 2 3

j

2

3i

4

. .
 .

. . .

The i and j dimensions in this diagram represent loop indices, not array subscripts.
The arcs represent the loop-carried flow dependence.

If we wish to interchange the i and j loops of this code (e.g., to improve cache
locality), we find that we cannot do it, because of the dependence: we would end
up trying to write A[i, j] before we had written A[i−1, j+1].

To analyze loop-carried dependences, high-performance optimizing compilers
use symbolic mathematics to characterize the sets of index values that may cause
the subscript expressions in different array references to evaluate to the same
value. Compilers differ somewhat in the sophistication of this analysis. Most
can handle linear combinations of loop indices. None, of course, can handle all
expressions, since equivalence of general formulae is undecidable. When unable
to fully characterize subscripts, a compiler must conservatively assume the worst,
and rule out transformations whose safety cannot be proven.

In many cases a loop with a fully characterized dependence that precludes a
desired transformation can be modified in a way that eliminates the dependence.
In Example C 17.36 above, we can reverse the order of the j loop without violatingEXAMPLE 17.37

Loop reversal and
interchange

the dependence:

for i := 2 to n
for j := n−1 to 1 by−1

A[i, j] := A[i, j] − A[i−1, j+1]

17.7.2 Loop Reordering C 401

This change transforms the iteration space:

n – 1 n – 2

j

n – 3

2

3i

4

. .
 .

. . .

And now the loops can safely be interchanged:

for j := n−1 to 1 by−1
for i := 2 to n

A[i, j] := A[i, j] − A[i−1, j+1]

Another transformation that sometimes serves to eliminate a dependence isEXAMPLE 17.38
Loop skewing known as loop skewing. In essence, it reshapes a rectangular iteration space into a

parallelogram, by adding the outer loop index to the inner one, and then subtracting
from the appropriate subscripts:

for i := 2 to n
for j := i+1 to i+n−1

A[i, j−i] := A[i, j−i] − A[i−1, j+1−i]

A moment’s consideration will reveal that this code accesses the exact same ele-
ments as before, in the exact same order. Its iteration space, however, looks like this:

3 4

j

5 6 7

2

3i

4

. .
 .

. . .

Now the loops can safely be interchanged. The transformation is complicated by
the need to accommodate the sloping sides of the iteration space. To avoid using
min and max functions, we can divide the space into two triangular sections, each
of which has its own loop nest:

C 402 Chapter 17 Code Improvement

for j := 3 to n+1
for i := 2 to j−1

A[i, j− i] := A[i, j− i] − A[i−1, j+1− i]
for j := n+2 to 2×n−1

for i := j−n+1 to n
A[i, j− i] := A[i, j− i] − A[i−1, j+1− i]

Skewing has led to more complicated code than did reversal of the j loop, but it
could be used in the presence of other dependences that would eliminate reversal
as an option.

Several other loop transformations, including distribution, can also be used
in certain cases to eliminate loop-carried dependences, allowing us to apply tech-
niques that improve cache locality or (as discussed immediately below) enable
us to execute code in parallel on a vector or multicore machine. Of course, no
set of transformations can eliminate all dependences; some code simply can’t be
improved.

Parallelization

Loop iterations (at least in nonrecursive programs) constitute the principal source
of operations that can execute in parallel. Ideally, one needs to find independent loop
iterations: ones with no loop-carried dependences. (In some cases, iterations can
also profitably be executed in parallel even if they have dependences, so long as they
synchronize their operations appropriately.) In Example 13.8 and Section 13.4.6 we
considered loop constructs that allow the programmer to specify parallel execution.
Even in languages without such special constructs, a compiler can often parallelize
code by identifying—or creating—loops with as few loop-carried dependences as
possible. The transformations described above are valuable tools in this endeavor.

Given a parallelizable loop, the compiler must consider several other issues
in order to ensure good performance. One of the most important of these is the
granularity of parallelism. For a very simple example, consider the problem of ‘‘zero-EXAMPLE 17.39

Coarse-grain parallelization ing out’’ a two-dimensional array, here indexed from 0 to n−1 in each dimension,
and laid out in row-major order:

for i := 0 to n−1
for j := 0 to n−1

A[i, j] := 0

On a machine comprising several general-purpose processor cores, we would
probably parallelize the outer loop:

–– on processor core pid:
for i := (n/p × pid) to (n/p × (pid + 1) − 1)

for j := 1 to n
A[i, j] := 0

Here we have given each core a band of rows to initialize. We have assumed that
cores are numbered from 0 to p−1, and that p divides n evenly.

17.8 Register Allocation C 403

The strategy on a vector machine is very different. Such a machine includes
a collection of v-element vector registers, and instructions to load, store, and
compute on vector data. The vector instructions are deeply pipelined, allowing the
machine to exploit a high degree of fine-grain parallelism. To satisfy the hardware,EXAMPLE 17.40

Strip mining the compiler needs to parallelize inner loops:

for i := 0 to n−1
for j := 0 to n−1 by v

A[i, j:j+v−1] := 0 –– vector operation

Here the notation A[i, j:j+v−1] represents a v-element slice of A. The constant v
should be set to the length of a vector register (which we again assume divides n
evenly). The code transformation that extracts v-element operations from longer
loops is known as strip mining. It is essentially a one-dimensional form of tiling.

Other issues of importance in parallelizing compilers include communication
and load balance. Just as locality of reference reduces communication between the
cache and main memory on a single-core machine, locality in parallel programs
reduces communication among cores and between the cores and memory. Opti-
mizations similar to those employed to reduce the number of cache misses on a
single-core machine can be used to reduce communication traffic on a multicore
machine.

Load balance refers to the division of labor among processor cores. If we divide
the work of a program among 16 cores, we shall obtain a speedup of close to 16 only
if each core takes the same amount of time to do its work. If we accidentally assign
5% of the work to each of 15 cores and 25% of the work to the 16th, we are likely to
see a speedup of no more than 4×. For simple loops it is often possible to predict
performance accurately enough to divide the work among cores at compile time.
For more complex loops, in which different iterations perform different amounts
of work or have different cache behavior, it is often better to generate self-scheduled
code, which divides the work up at run time. In its simplest form, self scheduling
creates a ‘‘bag of tasks,’’ as described in Section 13.2. Each task consists of a set of
loop iterations. The number of such tasks is chosen to be significantly larger than
the number of cores. When finished with a given task, a core goes back to the bag
to get another.

17.8 Register Allocation

In a simple compiler with no global optimizations, register allocation can be per-
formed independently in every basic block. To avoid the obvious inefficiency
of storing frequently accessed variables to memory at the end of many blocks,
and reading them back in again in others, simple compilers usually apply a set of
heuristics to identify such variables and allocate them to registers over the life of a
subroutine. Obvious candidates for a dedicated register include loop indices and
scalar local variables and parameters.

C 404 Chapter 17 Code Improvement

It has been known since the early 1970s that register allocation is equivalent
to the NP-hard problem of graph coloring. Following the work of Chaitin et al.
[CAC+81], heuristic (nonoptimal) implementations of graph coloring have become
a common approach to register allocation in aggressive optimizing compilers. We
describe the basic idea here; for more detail see Cooper and Torczon’s text [CT11,
Chap. 13].

The first step is to identify virtual registers that cannot share an architectural
register, because they contain values that are live concurrently. To accomplish
this step we use reaching definitions data flow analysis (Section C 17.5.1). For theEXAMPLE 17.41

Live ranges of virtual
registers

software-pipelined version of our combinations subroutine (Figure C 17.16), we
can chart the live ranges of the virtual registers as shown in Figure C 17.18. Note
that the live range of v19 spans the backward branch at the end of Block 2; though
typographically disconnected it is contiguous in time.

Given these live ranges, we construct a register interference graph. The nodes
of this graph represent virtual registers. Registers vi and v j are connected by
an arc if they are simultaneously live. The interference graph corresponding toEXAMPLE 17.42

Register coloring Figure C 17.18 appears in Figure C 17.19. The problem of mapping virtual registers
onto the smallest possible number of architectural registers now amounts to finding
a minimal coloring of this graph: an assignment of ‘‘colors’’ to nodes such that no
arc connects two nodes of the same color.

In our example, we can find one of several optimal solutions by inspection. The
six registers in the center of the figure constitute a clique (a completely connected
subgraph); each must be mapped to a separate architectural register. Moreover
there are three cases—registers v1 and v19, v2 and v26, and v9 and v34—in which
one register is copied into the other somewhere in the code, but the two are never
simultaneously live. If we use a common architectural register in each of these cases
then we can eliminate the copy instructions; this optimization is known as live
range coalescing. Registers v13, v43, and v44 are connected to every member of the
clique, but not to each other; they can share a seventh architectural register. Register
v8 is connected to v1, v2, and v9, but not to anything else; we have arbitrarily
chosen to have both it and t13 share with the three registers on the right.

Final code for the combinations subroutine appears in Figure C 17.20. WeEXAMPLE 17.43
Optimized combinations
subroutine

have left v1/v19 and v2/v26 in r0 and r1, the registers in which their initial values
were passed. Because our subroutine is a leaf, these registers are never needed
for other arguments. Following Arm conventions (Section C 5.4.5), we have used
registers r2 through r6 as additional temporary registers. Of these, r4 through r6
are callee-saves, so we have pushed their old values in the prologue and popped
them in the epilogue.

We have glossed over two important issues. First, on almost any real machine,
architectural registers are not uniform. Integer registers cannot be used for floating-
point operations. Caller-saves registers should not be used for variables whose
values are needed across subroutine calls. Registers that are overwritten by special
instructions (e.g., byte string search on a CISC machine) should not be used to
hold values that are needed across such instructions. To handle constraints of
this type, the register interference graph is usually extended to contain nodes for

17.8 Register Allocation C 405

Block 1:
 v1 := r0
 v2 := r1
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 v17 := 1
 v42 := v1 >> 1
 v26 := v2
 v34 := v9
 v18 := v1
 v19 := v1
 v44 := v42 = 0
 if v44 goto Block 4
 goto Block 3
Block 2:
 v13 := v19 div v17
 v17 := v17 + 1
 v18 := v18 − 1
 v26 := v26 + 4
 v34 := v34 − 4
 v19 := v13 × v18
 *v26 := v13
 *v34 := v13
Block 3:
 v43 := v17 < v42
 if v43 goto Block 2
Block 4a:
 t13 := v19 div v17
 *(v26+4) := t13
 *(v34−4) := t13
Block 4:
 goto *lr

v1 v2 v8 v9 v13 t13 v17 v18 v19 v26 v34 v42 v43 v44

Figure 17.18 Live ranges for virtual registers in the software-pipelined version of the
combinations subroutine (Figure C 17.16).

both virtual and architectural registers. Arcs are then drawn from each virtual
register to the architectural registers to which it should not be mapped. Each
architectural register is also connected to every other, to force them all to have
separate colors. After coloring the resulting graph, we assign each virtual register to
the architectural register of the same color. On Arm (for which we are supposedly
generating code), v43 and v44 must actually be mapped to the condition codes in
the processor status register (psr). The astute reader may have noticed that we did

C 406 Chapter 17 Code Improvement

v1
r0

v8
r6

v9
r4

v2
r1

t13
r6

v17
r2

v18

v13
r6

v43
r6

v44
r6

r3

v19
r0

v26
r1

v34
r4

v42
r5

Figure 17.19 Register interference graph for the software pipelined version of the combina-
tions subroutine. Using architectural register names, we have indicated one of several possible
seven-colorings.

Block 1:
push { r4, r5, r6 }
∗r1 := 1
r6 := r0 << 2
r4 := r1 + r6
∗r4 := 1
r2 := 1
r5 := r0 >> 1
r3 := r0
cc := r5 = 0
if cc goto Block 4
goto Block 3

Block 2:
r6 := r0 div r2
r2 := r2 + 1
r3 := r3 − 1

r1 := r1 + 4
r4 := r4 − 4
r0 := r6 × r3
∗r1 := r6
∗r4 := r6

Block 3:
cc := r2 < r5
if cc goto Block 2

Block 4a:
r6 := r0 div r2
∗(r1+4) := r6
∗(r4−4) := r6

Block 4:
pop { r4, r5, r6 }
goto ∗lr

Figure 17.20 Final code for the combinations subroutine, after assigning architectural
registers and eliminating useless copy instructions.

so in Figure C 17.20. In our particular example, the change has no impact on the
number of colors required for the remaining virtual registers.

The second issue we’ve ignored is what happens when there aren’t enough
architectural registers to go around. In this case it will not be possible to color the
interference graph. Using a variety of heuristics (which we do not cover here), the
compiler chooses virtual registers whose live ranges can be split into two or more

17.9 Summary and Concluding Remarks C 407

subranges. A value that is live at the end of a subrange may be spilled (stored) to
memory, and reloaded at the beginning of the subsequent subrange. Alternatively,
it may be rematerialized by repeating the calculation that produced it (assuming
the necessary operands are still available). Which is cheaper will depend on the
cost of loads and stores and the complexity of the generating calculation.

It is easy to prove that with a sufficient number of range splits it is possible
to color any graph, given at least three colors. The trick is to find a set of splits
that keeps the cost of spills and rematerialization low. Once register allocation is
complete, as noted in Sections C 17.1 and C 17.6, we shall want to repeat instruction
scheduling, in order to fill any newly created load delays.

3CHECK YOUR UNDERSTANDING

28. What is the difference between loop unrolling and software pipelining? Explain
why the latter may increase register pressure.

29. What is the purpose of loop interchange? Loop tiling (blocking)?

30. What are the potential benefits of loop distribution? Loop fusion? What is loop
peeling?

31. What does it mean for loops to be perfectly nested? Why are perfect loop nests
important?

32. What is a loop-carried dependence? Describe three loop transformations that
may serve in some cases to eliminate such a dependence.

33. Describe the fundamental difference between the parallelization strategy for
multicore machines and the parallelization strategy for vector machines.

34. What is self scheduling? When is it desirable?

35. What is the live range of a register? Why might it not be a contiguous range of
instructions?

36. What is a register interference graph? What is its significance? Why do produc-
tion compilers depend on heuristics (rather than precise solutions) for register
allocation?

37. List three reasons why it might not be possible to treat architectural registers
uniformly for purposes of register allocation.

17.9 Summary and Concluding Remarks

This chapter has addressed the subject of code improvement (‘‘optimization’’).
We considered several of the most important optimization techniques, including
peephole optimization; local and global (procedure-level) redundancy elimination

C 408 Chapter 17 Code Improvement

(constant folding, constant propagation, copy propagation, common subexpres-
sion elimination); loop improvement (invariant hoisting, strength reduction or
elimination of induction variables, unrolling and software pipelining, reordering
for cache improvement or parallelization); instruction scheduling; and register
allocation. Many others techniques, too numerous to mention, can be found in the
literature or in production use.

To facilitate code improvement, we introduced several new data structures and
program representations, including dependence DAGs (for instruction scheduling),
static single-assignment (SSA) form (for many purposes, including global common
subexpression elimination via value numbering), and the register interference graph
(for architectural register allocation). For many global optimizations we made use of
data flow analysis. Specifically, we employed it to identify available expressions (for
global common subexpression elimination), to identify live variables (to eliminate
useless stores), and to calculate reaching definitions (to identify loop invariants;
also useful for finding live ranges of virtual registers). We also noted that it can be
used for global constant propagation, copy propagation, conversion to SSA form,
and a host of other purposes.

An obvious question for both the writers and users of compilers is: among
the many possible code improvement techniques, which produce the most ‘‘bang
for the buck’’? For modern machines, particularly those with in-order pipelines,
instruction scheduling and register allocation are definitely on the list. Significant
additional benefits accrue from some sort of global register allocation, if only to
avoid repeated loads and stores of loop indices and other heavily used local vari-
ables and parameters. Beyond these basic techniques, which mainly amount to
making good use of the hardware, the most significant benefits in von Neumann
programs come from optimizing references to arrays, particularly within loops.
Most production-quality compilers (1) perform at least enough common subex-
pression analysis to identify redundant address calculations for arrays, (2) hoist
invariant calculations out of loops, and (3) perform strength reduction on induction
variables, eliminating them if possible.

As we noted in the introduction to the chapter, code improvement remains
an extremely active area of research. Much of this research addresses language
features and computational models for which traditional optimization techniques
have not been particularly effective. Examples include alias analysis for pointers
in C, static resolution of virtual method calls in object-oriented languages (to
permit inlining and interprocedural optimization), streamlined communication
in message-passing languages, and a variety of issues for functional and logic
languages. In some cases, new programming paradigms can change the goals
of code improvement. For just-in-time compilation of Java or C# programs, for
example, the speed of the code improver may be as important as the speed of the
code it produces. In other cases, new sources of information (e.g., feedback from
run-time profiling) create new opportunities for improvement. Finally, advances
in processor architecture (multiple pipelines, very wide instruction words, out-of-
order execution, architecturally visible caches, speculative instructions) continue to
create new challenges; processor design and compiler design are deeply interrelated.

17.10 Exercises C 409

17.10 Exercises

17.1 In Section C 17.2 we suggested replacing the instruction r1 := r2 / 2 with
the instruction r1 := r2 >> 1, and noted that the replacement may not be
correct for negative numbers. Explain the problem. You will want to learn
the difference between logical and arithmetic shift operations (see almost
any assembly language manual). You will also want to consider the issue of
rounding.

17.2 Prove that the division operation in the loop of the combinations subrou-
tine (Example C 17.10) always produces a remainder of zero. Explain the
need for the parentheses around the numerator.

17.3 Certain code improvements can sometimes be performed by the program-
mer, in the source-language program. Examples include introducing addi-
tional variables to hold common subexpressions (so that they need not be
recomputed), moving invariant computations out of loops, and applying
strength reduction to induction variables or to multiplications by powers of
two. Describe several optimizations that cannot reasonably be performed
by the programmer, and explain why some that could be performed by the
programmer might best be left to the compiler.

17.4 In Section 6.5.1, we suggested that the loop

// before
for (i = low; i <= high; i++) {

// during
}
// after

be translated as

–– before
i := low
goto test

top:
–– during
i +:= 1

test:
if i ≤ high goto top
–– after

And indeed this is the translation we have used for the combinations
subroutine. The following is an alternative translation:

–– before
i := low
if i > high goto bottom

C 410 Chapter 17 Code Improvement

top:
–– during
i +:= 1
if i ≤ high goto top

bottom:
–– after

Explain why this translation might be preferable to the one we used. (Hints:
Consider the number of branches, the migration of loop invariants, and
opportunities to fill delay slots.)

17.5 Beginning with the translation of the previous exercise, reapply the code
improvements discussed in this chapter to the combinations subroutine.

17.6 Give an example in which the numbered heuristics listed under ‘‘Depen-
dence Analysis’’ in Section C 17.6 do not lead to an optimal code schedule.

17.7 Show that forward data flow analysis can be used to verify that a variable
is assigned a value on every possible control path leading to a use of that
variable (this is the notion of definite assignment, described in Section 6.1.3).

17.8 In Sidebar 16.3, we noted two additional properties (other than definite
assignment) that a Java Virtual Machine must verify in order to protect itself
from potentially erroneous bytecode. On every possible path to a given
statement S (a) every variable read in S must have the same type (which
must of course be consistent with operations in S), and (b) the operand stack
must have the same current depth, and must not overflow or underflow
in S. Describe how data flow analysis can be used to verify these properties.

17.9 Show that very busy expressions (those that are guaranteed to be calculated
on every future code path) can be detected via backward, all-paths data flow
analysis. Suggest a space-saving code improvement for such expressions.

17.10 Explain how to gather information during local value numbering that will
allow us to identify the sets of variables and registers that contributed to
the value of each virtual register. (If the value of register vi depends on
the value of register v j or of variable x, then during available expression
analysis we say that v i ∈ KillB if B contains an assignment to v j or x and
does not contain a subsequent assignment to vi .)

17.11 Show how to strength-reduce the expression i2 within a loop, where i is the
loop index variable. You may assume that the loop step size is one.

17.12 Division is often much more expensive than addition and subtraction. Show
how to replace expressions of the form i div c on the inside of a for loop
with additions and/or subtractions, where i is the loop index variable and c
is an integer constant. You may assume that the loop step size is one.

17.13 Consider the following high-level pseudocode:

17.10 Exercises C 411

read(n)
for i in 1 . . 100

B[i] := n × i
if n > 0

A[i] := B[i]

The condition n > 0 is loop invariant. Can we move it out of the loop? If so,
explain how. If not, explain why.

17.14 Should live variable analysis be performed before or after loop invariant
elimination (or should it be done twice, before and after)? Justify your
answer.

17.15 Starting with the naive gcd code of Figure 1.7, show the result of local
redundancy elimination (via value numbering) and instruction scheduling.

17.16 Continuing the previous exercise, draw the program’s control flow graph
and show the result of global value numbering. Next, use data flow analysis
to drive any appropriate global optimizations. Then draw and color the
register conflict graph in order to perform global register allocation. Finally,
perform a final pass of instruction scheduling. How does your code compare
to the version in Example 1.2?

17.17 In Section C 17.6, we noted that hardware register renaming can often hide
anti- and output dependences. Will it help in Figure C 17.13? Explain.

17.18 Consider the following code:

v2 := ∗v1
v1 := v1 + 20
v3 := ∗v1
—
v4 := v2 + v3

Show how to shorten the time required for this code by moving the update
of v1 forward into the delay slot of the second load. (Assume that v1 is
still live at the end.) Describe the conditions that must hold for this type
of transformation to be applied, and the alterations that must be made to
individual instructions to maintain correctness.

17.19 Consider the following code:

v5 := v2 × v36
—
—
—
—
v6 := v5 + v1
v1 := v1 + 20

Show how to shorten the time required for this code by moving the update
of v1 backward into a delay slot of the multiply. Describe the conditions that

C 412 Chapter 17 Code Improvement

must hold for this type of transformation to be applied, and the alterations
that must be made to individual instructions to maintain correctness.

17.20 In the spirit of the previous two exercises, show how to shorten the main
loop of the combinations subroutine (prior to unrolling or pipelining)
by moving the updates of v26 and v34 backward into delay slots. What
percentage impact does this change make in the performance of the loop?

17.21 Using the code in Figures C 17.12 and C 17.14 as a guide, unroll the loop of
the combinations subroutine three times. Construct a dependence DAG
for the new Block 2. Finally, schedule the block. How many cycles does
your code consume per iteration of the original (unrolled) loop? How does
it compare to the software pipelined version of the loop (Figure C 17.16)?

17.22 Write a version of the combinations subroutine whose loop is both un-
rolled and software pipelined. In other words, build the loop body from
the instructions between the left-most and right-most vertical bars of Fig-
ure C 17.15, rather than from the instructions between adjacent bars. You
should update the array pointers only once per iteration. How many cycles
does your code consume per iteration of the original loop? How messy is
the code to ‘‘prime’’ and ‘‘flush’’ the pipeline, and to check for sufficient
numbers of iterations?

17.23 Consider the following code for matrix multiplication:

for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {

C[i][j] = 0;
}

}
for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {
for (k = 0; k < n; k++) {

C[i][j] += A[i][k] * B[k][j];
}

}
}

Describe the access patterns for matrices A, B, and C. If the matrices are
large, how many times will each cache line be fetched from memory? Tile
the inner two loops. Describe the effect on the number of cache misses.

17.24 Consider the following simple instance of Gaussian elimination:

for (i = 0; i < n-1; i++) {
for (j = i+1; j < n; j++) {

for (k = n-1; k >= i; k--) {
A[j][k] -= A[i][k] * A[j][i] / A[i][i];

}
}

}

17.11 Explorations C 413

(Gaussian elimination serves to triangularize a matrix. It is a key step in the
solution of systems of linear equations.) What are the loop invariants in this
code? What are the loop-carried dependences? Discuss how to optimize
the code. Be sure to consider locality-improving loop transformations.

17.25 Modify the tiled matrix transpose of Example C 17.32 to eliminate the min
calculations in the bounds of the inner loops. Perform the same modifica-
tion on your answer to Exercise C 17.23.

17.11 Explorations

17.26 Investigate the back-end structure of your favorite compiler. What levels of
optimization are available? What techniques are employed at each level?
What is the default level? Does the compiler generate assembly language or
object code?

Experiment with optimization in several program fragments. Instruct the
compiler to generate assembly language, or use a disassembler or debugger
to examine the generated object code. Evaluate the quality of this code at
various levels of optimization.

If your compiler employs a separate assembler, compare the assembler
input to its disassembled output. What optimizations, if any, are performed
by the assembler?

17.27 As a general rule, a compiler can apply a program transformation only if it
preserves the correctness of the code. In some circumstances, however, the
correctness of a transformation may depend on information that will not be
known until run time. In this case, a compiler may generate two (or more)
versions of some body of code, together with a run-time check that chooses
which version to use, or customizes a general, parameterized version.

Learn about the ‘‘inspector-executor’’ compilation paradigm pioneered
by Saltz et al. [SMC91]. How general is this technique? Under what circum-
stances can the performance benefits be expected to outweigh the cost of
the run-time check and the potential increase in code size?

17.28 Static compiler analysis can be used to check for patterns of information
flow that are likely (though not certain) to constitute programming errors.
Investigate the work of Guyer et al. [GL05], which performs analysis remi-
niscent of taint mode (Exploration 16.21) at compile time. In a similar vein,
investigate the work of Yang et al. [YTEM04] and Chen et al. [CDW04],
which use static model checking to catch high-level errors. What do you
think of such efforts? How do they compare to taint mode or to proof-
carrying code (Exploration 16.22)? Can static analysis be useful if it has both
false negatives (errors it misses) and false positives (correct code it flags as
erroneous)?

17.29 In a somewhat gloomy parody of Moore’s Law, Todd Proebsting (an eminent
compiler researcher formerly at Microsoft Research and now on the faculty

C 414 Chapter 17 Code Improvement

of the University of Arizona) once coined what he called Proebsting’s Law:
‘‘Compiler advances double computing power every 18 years.’’

Survey the history of compiler technology. What have been the major
innovations? Have there been important advances in areas other than speed?
Is Proebsting’s Law a fair assessment of the field?

17.12 Bibliographic Notes

Mainstream compiler textbooks (e.g., those of Cooper and Torczon [CT11], Grune
et al. [GBJ+12], or Aho et al. [ALSU07]) are an accessible source of information
on back-end compiler technology. Much of the presentation here was inspired
by Muchnick’s Advanced Compiler Design and Implementation, which contains
a wealth of detailed information and citations to related work [Muc97]. Much
of the leading-edge compiler research appears in the annual ACM Conference on
Programming Language Design and Implementation (PLDI). A compendium of ‘‘best
papers’’ from the first 20 years of this conference was published in 2004 [McK04].

Throughout our study of code improvement, we concentrated our attention
on the von Neumann family of languages. Analogous techniques for functional
[App91; Pey87; Pey92; WM95, Chap. 3; App97, Chap. 15; GBJ+12, Chap. 7]; object-
oriented [AH95; GDDC97; WM95, Chap. 5; App97, Chap. 14; GBJ+12, Chap. 6];
and logic languages [DRSS96; FSS83; Zho96; WM95, Chap. 4; GBJ+12, Chap. 8]
are an active topic of research, but are beyond the scope of this book. A key challenge
in functional languages is to identify repetitive patterns of calls (e.g., tail recursion),
for which loop-like optimizations can be performed. A key challenge in object-
oriented languages is to predict the targets of virtual subroutine calls statically, to
permit in-lining and interprocedural code improvement. The dominant challenge
in logic languages is to better direct the underlying process of goal-directed search.

Local value numbering is originally due to Cocke and Schwartz [CS69]; the
global algorithm described here is based on that of Alpern, Wegman, and Zadeck
[AWZ88]. Chaitin et al. [CAC+81] popularized the use of graph coloring for reg-
ister allocation. Cytron et al. [CFR+91] describe the generation and use of static
single-assignment form. Allen and Kennedy [AK02, Sec. 12.2] discuss the general
problem of alias analysis in C. Pointers have historically been the most difficult
part of this analysis; Smaragdakis and Balatsouras [SB15] provide a tutorial survey.
Instruction scheduling from basic-block dependence DAGs is described by Gib-
bons and Muchnick [GM86]. The general technique is known as list scheduling;
explanations appear in the texts of Muchnick [Muc97, Sec. 17.1.2] and Cooper and
Torczon [CT11, Sec. 12.3]. Massalin provides a delightful discussion of circum-
stances under which it may be desirable (and possible) to generate a truly optimal
program [Mas87]. Several projects have expanded on this idea; see for example
the work of Schkufza et al. [SSA13].

Sources of information on loop transformations and parallelization include
the text of Allen and Kennedy [AK02], the classic text of Wolfe [Wol96], and

17.12 Bibliographic Notes C 415

the excellent survey of Bacon, Graham, and Sharp [BGS94]. Banerjee provides a
detailed discussion of loop dependence analysis [Ban97]. Rau and Fisher discuss
fine-grain instruction-level parallelism, of the sort exploitable by vector, wide-
instruction-word, or superscalar processors [RF93].

