Run-time Program Management

[6.1.2 The Common Language Infrastructure

Work on the system that became the Common Language Infrastructure (CLI) began
at Microsoft Corporation in the late 1990s, and was able to benefit from experience
with Java and the JVM, which were already well established. The most significant
differences between the virtual machines, however, stem from Microsoft’s emphasis
on cross-language interoperability—an emphasis that predates the JVM by many
years.

Growing out of earlier work on the DDE, OLE, COM, ActiveX, and DCOM
projects, the beta version of NET was released in 2000. In addition to a virtual
machine, it includes libraries, servers, and tools for a wide variety of local and
distributed services, including user interface management, database access, net-
working, and security. A specification for the virtual machine—the CLI—was
standardized by ECMA in 2001 and by the ISO in 2003. The standard has been
updated several times over the years; version 6 was released in June 2012 [Int12a].

Perhaps the most significant contribution of the CLI is the definition of a Com-
mon Type System (CTS) for all supported languages. Encompassing nearly every-
thing described in Chapters 8 and 10 of this book, the CTS provides a superset
of what any particular language needs, while requiring common semantics and
implementation wherever the type systems of more than one language intersect.
In addition to the CTS, the CLI defines a virtual machine architecture, the VES
(Virtual Execution System); an instruction set for that machine, the CIL (Common
Intermediate Language); and a portable file format for code and metadata, PE
(Portable Executable) assemblies.

C# is in some sense the premier language for .NET, and was developed concur-
rently with it. Several dozen languages have been ported to the CLI, however, and
several of these, including Visual Basic, C++/CLI (formerly Managed C++), and
F# (a descendant of OCaml) are now in widespread use.

Thanks to the ECMA/ISO standard, it is possible for organizations other than
Microsoft to build implementations of the CLI. The leading such implementation
is the open-source Mono project, led by Xamarin, Inc. (a Microsoft subsidiary).
Mono runs on a wide variety of platforms, but tends to lag slightly behind .NET in

c-343

c-344

Chapter 16 Run-time Program Management

the addition of new features. Outside Microsoft, Java and the JVM still dominate.
Within Microsoft, most new development today employs C#. Microsoft calls its
CLI implementation the Common Language Runtime (CLR).

Architecture and Comparison to the J[VM

In many ways, the CLI resembles the JVM. Both systems define a multithreaded,
stack-based virtual machine, with built-in support for garbage collection, excep-
tions, virtual method dispatch, and interface inheritance. Both represent programs
using a platform-independent, self-descriptive, bytecode notation. For languages
like C#, the CLI provides all the safety of the JVM, including definite assignment,
strong typing, and protection against overflow or underflow of the operand stack.
The biggest contrasts between the JVM and CLI stem from the latter’s support
for multiple programming languages (the following is not a comprehensive list).

Richer Type System The Common Type System (discussed below) supports both
value and reference variables of structured types (the JVM is limited to refer-
ences). The CTS also has true multidimensional arrays (allocated, contiguously,
as a single operation); function pointers; explicit support for generics; and the
ability to enforce structural type equivalence.

Richer Calling Mechanisms To facilitate the implementation of functional lan-
guages, the CLI provides explicit tail-recursive function calls (Section 6.6.1);

DESIGN & IMPLEMENTATION

[6.7 Assuming a just-in-time compiler

Like the JVM, the CLI has behavior defined in terms of an abstract virtual
machine. Where Java’s virtual machine may in practice be either interpreted or
just-in-time compiled, however, the CLI was designed from the outset for just-
in-time compilation. Several minor differences between the virtual machines
reflect this difference in expected implementations. Arithmetic instructions in
Java bytecode generally include an explicit indication of operand type: there are,
for example, four separate opcodes for 32- and 64-bit integer and floating-point
addition. In the CLI’s Common Intermediate Language (CIL), there is only one
add instruction: it figures out what to do based on the types of its operands.
In type-safe code, of course, the type of every operand is statically known, and
either a compiler or an interpreter can inspect the types of arguments and figure
out what to do. The compiler, however, only has to do this once, at compile time;
the interpreter has to do it every time it encounters the instruction. In a similar
vein, slots in the local variable array of the CLI VES can be of arbitrary size, and
are required to hold a value of a single, statically known type throughout the
execution of the method. For the sake of space efficiency and rapid indexing,
the JVM reserves exactly 32 bits for every slot (longs and doubles take two
consecutive slots), and a given slot can be used for values of different types at
different points in time.

16.1.2 The Common Language Infrastructure ~ c-345

these discard the caller’s frame while retaining the dynamic link. The CLI also
supports both value and reference parameters, variable numbers of parameters
(in the fully general sense of C), multiple return values, and nonvirtual methods,
all of which the JVM lacks.

Unsafe Code For the benefit of C, C++, and other non-type-safe languages, the
CLI supports explicitly unsafe operations: nonconverting type casts, dynamic
allocation of non-garbage-collected memory, pointers to non-heap data, and
pointer arithmetic. The CLI distinguishes explicitly between verifiable code,
which cannot use these features, and unverifiable code, which can. (Verifiable
code must also follow a host of other rules.)

Miscellaneous Again for the sake of multiple languages, the CLI supports global
data and functions, local variables whose shapes and sizes are not statically
known, optional detection of arithmetic overflow, and rich facilities for “scoped”
security and access control.

As in the JVM, every CLI thread has a small set of base registers and a stack
of method call frames, each of which contains an array of local variables and an
operand stack for expression evaluation. Each frame also contains a local memory
pool for variables of dynamic and elaboration-time shape. Incoming parameters
have their own separate space in the CLI; in the JVM they occupy the first few slots
of the local variable array.

The Common Type System

The VES and CIL provide instructions to manipulate data of certain built-in types.
A few additional types are predefined, and have built-in names in CLI metadata.
To these, the CTS adds a wide variety of type constructors. For each, it defines both
behavior and representation. No single language provides all the types of the CTS,
but (with occasional compromises) each provides a subset.

The Common Language Specification (CLS) defines a subset of the CTS intended
for cross-language interaction. It omits several type constructors provided by
the CTS, and places restrictions on others. Standard libraries (collection classes,
XML, network support, reflection, extended numerics) restrict themselves (with
occasional exceptions) to types in the CLS. Not all languages support the full CLS;
code written in those languages cannot make use of library facilities that require
unsupported types.

Built-in Types The VES and CIL provide instructions to manipulate the following
types:

Integers in 8-, 16-, 32-, and 64-bit lengths, both signed and unsigned

“Native” integers, of the length supported by the underlying hardware, again
both signed and unsigned

IEEE floating point, both single and double precision
Object references and “managed” pointers

c-346

Chapter 16 Run-time Program Management

Managed pointers are different from references: while typed, they don’t neces-
sarily point to the beginning of a dynamically created object. Specifically, they can
refer to fields within an object or to data outside the heap. The CIL makes sure
these pointers are known to the garbage collector, which must avoid reclaiming
any object O when a managed pointer refers to a field inside O. More details on
pointers and references can be found in Sidebar C-16.8.

Beyond the basic hardware-level types, CLI metadata treats Booleans, characters,
and strings as built-ins. Booleans and characters are manipulated in the VES using
instructions intended for short integers; strings are manipulated by accessing their
internal structure.

Constructed Types To the built-in types, the CTS adds the following:

Dynamically allocated instances of class, interface, array, and delegate types. These
are the things to which references (the built-in type) can refer. Arrays can be
multidimensional, and are stored in row-major order. Delegates are closures
(subroutine references paired with referencing environments).

Methods — function types.
Properties — getters and setters for objects.

Events — lists of delegates, associated with an object, that should be called in
response to changes to the object.

Value types — records (structures), unions, and enumerations.

Boxed value types — values embedded in a dynamically allocated object so that
one can create references to them.

Function pointers — references to static functions: type-safe, but without a refer-
encing environment.

Typed references — pointers bundled together with a type descriptor, used for
C-style variable argument lists.

Unmanaged pointers — as in C, these can point to just about anything, and support
pointer arithmetic. They cannot point to garbage-collectible objects (or parts of
objects) in the heap.

With these type constructors come extensive semantic rules, covering such topics
as identity and equality,' casting and coercion, scoping and visibility, interface
inheritance, hiding and overriding of members, memory layout, initialization,
type safety, and verification. The details occupy hundreds of pages in the CLI
documentation.

The Common Language Specification Because no single language implements
the entire CTS, one cannot use arbitrary CTS types in a general-purpose interface
intended for use from many different languages. The Common Language Speci-
fication (CLS) defines a subset of the CTS that most (though not all) languages

I These are reminiscent of the relationships discussed in Sections 7.5 and 11.3.3.

16.1.2 The Common Language Infrastructure ~ c-347

can accommodate. Among other things, it omits several of the types provided
by the CTS, including signed 8-bit integers; unsigned native, 16-, 32-, and 64-bit
integers; boxed value types; global static fields and methods; unmanaged pointers;
typed references; and methods with variable numbers and types of arguments. The
CLS also imposes a variety of restrictions on the use of other types. It establishes
naming conventions, limits the use of overloading, and defines the operators and
conversions that programs can assume are supported on built-in types. It requires
a lower bound of zero on each dimension of array indexing. It prohibits fields and
static methods in interfaces. It insists that a constructor be called exactly once for
each created object, and that each constructor begin with a call to a constructor
of its base class. None of these restrictions applies to program components that
operate only within a given language.

Generics As described in Section C-7.3.5, generics were added to Java and C#
in very different ways. Partly to avoid the need to modify the JVM, Java generics
were defined in terms of type erasure, which effectively converts all generic types to
Object before generating bytecode. C# generics were defined in terms of reification,
which creates a new concrete type every time a generic is instantiated with different
arguments. Reified generics have been supported directly by the CLI since .NET

DESIGN & IMPLEMENTATION

16.8 References and pointers

The reference and pointer types of the CTS are a source of potential confusion.
In a language like Java, reference types provide the only means of indirection.
They refer to dynamically allocated instances of class, interface, and array types.
Managed pointers provide additional functionality for languages like C# and
Microsoft’s C++/CLI, which permit references to the insides of objects and to
values outside the CLI heap. Managed pointers are understood by the garbage
collector, and can be used in type-safe code: If a managed pointer p refers to a
field of object O, then the collector will know that O is live. It will also update p
automatically whenever it moves O.

Unmanaged pointers exist for the sake of languages like C. They are incom-
patible with garbage collection, and cannot point to objects in the heap. They
are also incompatible with type safety, and cannot be used in verifiable code.

Typed references (typedrefs) in the CLI include the information needed to
correctly manipulate references to values (e.g., in variable argument lists) whose
type cannot be statically determined.

Version 2.0 of the CLI introduced controlled-mutability managed pointers
(also known, somewhat inaccurately, as read-only pointers). Operations on
these pointers are constrained to prevent modification of the referenced object.
Read-only pointers are used in boxing and array contexts where generics require
the ability to generate a pointer to data of a value type, but modification of that
data might not be safe.

c-348 Chapter 16 Run-time Program Management

EXAMPLE I 6.39

Generics in the CLI and
JVM

version 2.0, introduced by Microsoft in 2005 and codified by ECMA and ISO in
2006.

Reified generic types are fully described in CLI metadata, allowing full type
checking and reflection. Consider the following code in C#:

class Node<T> {
public T val;
public Node<T> next;

}

Node<int> n = new Node<int>();
Console.WriteLine(n.GetType() .ToString());

If Node is an outermost class, the final line will print Node™ 1 [System.Int32].
The equivalent code in Java (running on the JVM) will simply print class Node.
To support generics, CLI version 2 extended the rules for type compatibility and
verification, and introduced new versions of several CIL instructions.

Metadata and Assemblies

Portable Executable (PE) assemblies are the rough equivalent of Java . jar files: they
contain the code for a collection of CLI classes. PE is based on the Common Object
File Format (COFF), originally developed for AT&T’s System V Unix. It is the
native object file format for Windows systems, extended to accommodate CIL as
an optional instruction set. Given the requirements of native-code executable files
(e.g., relocation—see Section 15.4), PE is quite a bit more complicated than Java
.class and . jar format. A PE assembly contains a general-purpose PE header, a
special CLI header, metadata describing the assembly’s types and methods, and
CIL code for the methods.

The metadata of an assembly has a complex internal structure. (A diagram of the
interconnections among some two dozen different kinds of tables fills two pages of
the annotated CLI standard [MRO04, pp. 322-323].) The metadata begins with a
manifest that specifies the files included and directly referenced, the types exported
and imported, versioning information, and security permissions. This is followed
by descriptions of all the types, and signatures for all the methods. Unlike the Java
constant pool, the metadata of an assembly is not directly visible to the assembly’s
code; it may be rearranged by the JIT compiler in implementation-dependent ways,
so long as it remains available to reflection routines at run time (obviously, those
routines are also implementation dependent).

The Common Intermediate Language

Just as the CLI VES bears a strong resemblance to the JVM, CIL bears a strong
resemblance to Java bytecode. Version 6 of the ECMA standard defines some
219 instructions, most with single-byte opcodes. Most instructions take their
arguments from, and return results to, the operand stack of the current method
frame. Others take explicit arguments representing variables, types, or methods.

EXAMPLE | 640

CIL for a list insert
operation

16.1.2 The Common Language Infrastructure ~ ¢-349

Java bytecode and CIL are similarly dense—they require roughly the same number
of bytes per instruction on average.

Many of the differences between the two intermediate languages are essentially
trivial. Java bytecode is big-endian; CIL is little-endian. Java bytecode has explicit
instructions for monitor entry and exit; these are method calls in the CLI. CIL
allows arbitrary offsets for branches; Java bytecode limits them to 64K bytes.

A few more significant differences stem from the assumption that CIL will always
be JIT-compiled, as described in Sidebar C-16.7. The most obvious difference here
is that Java bytecode encodes type information explicitly in opcodes, while CIL
requires it to be inferred from arguments. CIL also includes an explicit instruction
(1dtoken) that will push a “run-time handle” for a method, type, or field. While
the metadata of a CIL assembly must all be available at run time, its format may
be implementation dependent; the JIT compiler translates 1dtoken into machine
code consistent with that format. In the JVM, the class file constant pool is assumed
to be available at run time, in its standard format; an ordinary “load constant”
instruction suffices to push the desired reference.

A more subtle difference is the separation of arguments from local variables
in the CLI (they share one array in the JVM). Separate arrays admit special one-
byte load instructions for both the first few arguments and the first local variables,
without requiring that they have interleaved slots; this in turn may make it eas-
ier to generate object code in which arguments occupy contiguous locations in
memory (as, for example, in the argument build area of the stack described in
Section C-9.2.2).

Finally, as already suggested, several features of CIL, not found in Java bytecode,
stem from the need to support multiple source languages. We have noted that the
CLI provides value types, reference parameters, and optional overflow checking
on arithmetic; all of these are reflected in the CIL instruction set. There are also
several extra ways to make subroutine calls. Where Java bytecode supports only
static, virtual, and dynamic method invocations, CIL has (1) nonvirtual method
calls, as in C++ (these implicitly pass this, as virtual calls do); (2) indirect calls
(i.e., calls through function pointers); (3) tail calls, which discard the caller’s frame;
and (4) jumps, which redirect control to a method after executing some optional
prologue (e.g., for this pointer adjustment in languages with multiple inheritance;
see Section C-10.6).

To illustrate CIL, let us return to the linked-list set of Example ??. The declara-
tions given there are valid in both Java and C#. The insert method for this class
appears in Figure C-16.7. C# source (which is again identical to the Java version)
is on the left; a symbolic representation of the corresponding CIL is on the right.
As in Example ??, there are many examples of special one-byte load and store
instructions (here specified with a .index suffix on the opcode), and of instructions
that operate implicitly on the operand stack.

Verification As we have noted, the CLI distinguishes between verifiable and
unverifiable code. Verifiable code must satisfy a large variety of constraints that
guarantee type safety and catch many common programming errors. In particular,

c-350 Chapter 16 Run-time Program Management

.method private hidebysig

public void insert(int v) { instance default void insert (int32 v) cil managed
{
// Method begins at RVA 0x2070 // RVA == relative
// Code size 108 (0x6c¢) // virtual address

.maxstack 3
.locals init (

class LLset/node V_o, // n
class LLset/node v_1) // t
node n = head; IL_0000: 1ldarg.0

IL_0001: 1df1ld class LLset/node LLset::head
IL_0006: stloc.0

IL_0007: br IL_0013 // jump to header of rotated loop
IL_000c: 1ldloc.0 // n -- beginning of loop body
IL_000d: 1df1d class LLset/node LLset/node: :next
IL_0012: stloc.0 // n = n.next

while (n.next != null IL_0013: 1dloc.0 // n -- beginning of loop test

&& n.next.val < v) { IL_0014: 1d4f1d class LLset/node LLset/node: :next

IL_0019: brfalse IL_002f // exit loop if n null
IL_00le: 1dloc.0O // n

IL_001f: 1df1d class LLset/node LLset/node: :next
IL_0024: 1dfld int32 LLset/node::val

n = n.next; IL_0029: 1ldarg.1 // v
} IL_002a: blt IL_000c // continue loop
if (n.next == null IL_002f: 1dloc.0 // n
|| n.next.val > v) { IL_0030: 1dfld class LLset/node LLset/node::next
IL_0035: brfalse IL_004b
IL_003a: 1dloc.0 // n

IL_003b: 1dfld class LLset/node LLset/node: :next
IL_0040: 1dfld int32 LLset/node::val

IL_0045: 1ldarg.1 /] v
IL_0046: ble IL_006b
node t = new node(); IL_004b: newobj instance void class LLset/node::'.ctor'()
IL_0050: stloc.1 // t
t.val = v; IL_0051: 1dloc.1 // t
IL_0052: 1ldarg.1 // v
IL_0053: stfld int32 LLset/node::val
t.next = n.next; IL_0058: 1dloc.1 // t
IL_0059: 1dloc.0O // n

IL_005a: 1dfld class LLset/node LLset/node::next
IL_005f: stfld class LLset/node LLset/node: :next

n.next = t; IL_0064: 1dloc.0 // n
IL_0065: 1dloc.1 /lt
IL_0066: stfld class LLset/node LLset/node: :next
} // else v already in set IL_006b: ret
} } // end of method LLset::insert

Figure 16.7 C# source and CIL for a list insertion method. Qutput on the right was produced by the Mono project’s mcs
(compiler) and monodis (disassembler) tools, with additional comments inserted by hand. Note that the compiler has rotated
the test to the bottom of the while loop, which occupies lines IL_000c through IL_002a in the output code.

16.1.2 The Common Language Infrastructure ~ c-351

the VES can be sure that a verifiable program will never access data outside its
logical address space. Among other things, this guarantee ensures fault containment
for verifiable modules that share a single physical address space.

Unverifiable code can make use of unsafe language features (e.g., unions and
pointer arithmetic in C), but must still conform to more basic rules for validity (well-
formedness) of CIL. Together, the components of the VES (i.e., the JIT compiler,
loader, and run-time libraries) validate all loaded assemblies, and verify those that
claim to be verifiable. Any standard-conforming implementation of the CLI must
run all verifiable programs. Optionally, it may also run validated but not verifiable
programs.

As in the JVM, verification requires data flow analysis to check type consistency
and lack of underflow and overflow in the operand stack. The CLI standard requires
verifiable routines to specify that all local variables are initialized to zero. CLI
implementations typically perform definite assignment data flow analysis anyway;,
to identify cases in which those initializations can safely be omitted. The standard
also requires numerous checks on individual instructions. Many of these are also
performed by the JVM. Local variable references, for example, are statically checked
to make sure they lie within the declared bounds of the stack frame. Other checks
stem from the presence of unsafe features in the CLI. Verifiable code cannot use
unmanaged pointers or unions, for example, nor can it perform most indirect
method calls.

‘/CHECK YOUR UNDERSTANDING

38. Summarize the architecture of the Common Language Infrastructure. Contrast
it with the JVM. Highlight those features intended to facilitate cross-language
interoperability.

39. Describe how the choice of just-in-time compilation (and the rejection of
interpretation) influenced the structure of the CLI.

40. Describe several different kinds of references supported by the CLI. Why are
there so many?

41. What is the purpose of the Common Language Specification? Why is it only a
subset of the Common Type System?

42. Describe the CLI’s support for unsafe code. How can this support be reconciled
with the need for safety in embedded settings?

Run-time Program Management

16.14

16.15

16.16

[6.17

Exercises

Using Oracle’s jaotc compiler and mono --aot, compile the code of Fig-
ures 16.2 and C-16.7 all the way to machine language. Disassemble and
compare the results. Can all the differences be attributed to variations in
the quality of the compilers, or are any reflective of more fundamental
differences between the source languages or virtual machines?

Rewrite the list insertion method of Example C-16.40 in F# instead of C#.
Compile to CIL and compare to the right side of Figure C-16.7. Discuss any
differences you find.

Building on the previous exercise, rewrite your list insertion routine (both
C# and F# versions) to be generic in the type of the list elements. Compare
the generic and nongeneric versions of the resulting CIL and discuss the
differences.

Extend your F# code from Exercise C-16.16 to include list removal and
search routines. After finding and reading appropriate documentation,
package these routines in a library that can be called in a natural way not
only from F# but also from C#.

c-353

Run-time Program Management

16.26

16.27

16.28

Explorations

Learn the details of the CLI verification algorithm (Partition III, Section 1.8
of the ECMA standard, version 4 [Int12a]). Pay particular attention to the
rules for merging compatible types at joins in the control flow graph, and
for dealing with generics.

Learn more about the NET Language-Integrated Query mechanism
(LINQ), mentioned in Example 16.29. Discuss its use of attributes. Write
a program that uses it to interface to a database through SQL. Write
another program that uses it to process the elements of a set from the
System.Collections library.

Like most scripting languages, Perl 5 compiles its input to an internal syntax
tree format, which it then interprets. Explore this implementation, and
characterize the circumstances under which the interpreter may need to
call back into the compiler during execution. Also explore the perlcc
command-line script (itself written in Perl), which translates source code
to either bytecode or machine code.

In several cases, the interpreter may need to call back into the compiler
during execution. Features that force such dynamic compilation include
eval, which compiles and then interprets a string; require, which loads a
library package; and the ee version of the substitution command, which
performs expression evaluation on the replacement string:

$foo = "abc";
$foo =~ s/b/2 + 3/ee; # replace b with the value of 2 + 3
print "$foo\n"; # prints abc

Perl can also be directed, via library calls or the perlcc command-line
script (itself written in Perl), to translate source code to either bytecode
or machine code. In the former case, the output is an “executable” file

c-355

c-356 Chapter 16 Run-time Program Management

beginning with #! /usr/bin/perl (see Sidebar 14.4 for a discussion of the
#! convention). If invoked from the shell, this file will feed itself back into
Perl 5, which will notice that the rest of the file contains bytecode instead of
source, and will perform a quick reconstruction of the syntax tree, ready
for interpretation.

If directed to produce machine code, perlcc generates a C program,
which it then runs through the C compiler. The C program builds an ap-
propriate syntax tree and passes it directly to the Perl interpreter, bypassing
both the compiler and the byte-code-to-syntax-tree reconstruction. Both
the bytecode and machine code back ends are considered experimental;
they do not work for all programs.

