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Building a Runnable Program

[5.2.] GCC and LLVM

Traditionally, all machine-independent code improvement in gcc was based on
RTL. Over time it became clear that the IF had become an obstacle to further
improvements in the compiler, and that a higher-level form was needed. GIMPLE
was introduced to meet that need. Since gcc v.4.9 (2014), GENERIC has been
used for semantic analysis and, in a few cases, for certain language-specific code
improvement. As its final task, each front end converts the program from GENERIC
into GIMPLE. Depending on the requested level of code improvement, the “middle
end” may perform over 140 phases of code improvement and transformation on
the GIMPLE representation, after which it converts to RTL and performs as many
as 70 additional phases before handing the result to the back end for target code
generation.

Both GIMPLE and RTL are meant to be kept in memory across compiler phases,
rather than being written to a file. Both IFs have a human-readable external format,
which the compiler can write and (partially) read, but this format is not needed by
the compiler: the internal version is much better suited for automatic manipulation.

GIMPLE

The GIMPLE code generated by a gcc front end is essentially a distillation of
GENERIC, with many of the most complex (and often language-specific) features
“lowered” into a smaller, common set of tree node types. As a simple example,
consider the gcd program of Example 1.20:

int main () {

int i = getint();

int j = getint();

while (i !'= j) {
if A>3 i=1-3;
else j = j - i;

¥

putint(i);
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Figure C-15.11 illustrates the “high GIMPLE” produced by gcc’s C front end when
given this program as input. If we compare this GIMPLE code to Figure 15.2,
which loosely' resembles GENERIC, we see at least two significant differences.
First, all of the nodes that comprise a subroutine appear on a single list, with
control flow represented by explicit gotos and by true and false branches for
conditions. Second, both conditions and assignments have been designed to capture
an embedded binary expression, allowing us in many cases to collapse a small
subtree into a GIMPLE single node.

Over the course of its many phases, the gcc middle end will make many addi-
tional changes to this code, not only to improve its quality but also to further lower
its level of abstraction. This “flattening” of the tree makes it easier to translate into
RTL.

Perhaps the most significant transformation of GIMPLE is the conversion to
static single assignment (SSA) form. As noted in the main text and explored more
fully in Section C-17.4.1, SSA conversion facilitates subsequent code transforma-
tions by introducing extra variable names into the program in such a way that
nothing is ever written in more than one place.

RTL

RTL is loosely based on the S-expressions of Lisp. Each RTL expression consists of
an operator or expression type and a sequence of operands. In its external form,
these are represented by a parenthesized list in which the element immediately
inside the left parenthesis is the operator. Each such list is then embedded in
a wrapper that points to predecessor and successor expressions in linear order.
Internally, RTL expressions are represented by C structs and pointers. This pointer-
rich structure constitutes the interface among the compiler’s many back-end phases.
There are several dozen expression types, including constants, references to values
in memory or registers, arithmetic and logical operations, comparisons, bit-field
manipulations, type conversions, and stores to memory or registers.

The body of a subroutine consists of a sequence of RTL expressions. Each
expression in the sequence is called an insn (instruction). Each insn begins with
one of six special codes:

insn: an “ordinary” RTL expression.

jump_insn: an expression that may transfer control to a label.
call_insn: an expression that may make a subroutine call.
code_label: a possible target of a jump.

barrier: an indication that the previous insn always jumps away. Control will
never “fall through” to here.

I Unlike the informal notation of Figure 15.2, GENERIC and GIMPLE make no distinction between
syntax tree nodes and symbol table nodes. In effect, the symbol table is merged into the syntax
tree.
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bind
int —int call
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Figure I5.11  Simplified GIMPLE for the gcd program. The left child of the bind node holds
local symbol table information; references to this information—and to global functions getint
and putint—are indicated in the rest of the figure with parenthesized names. The first child of a
call node names the function, the second the place to assign the return value, and the rest the
arguments. An assign node with children (op, a, b, c) represents the assignment a := b op c. In
each condition node, the first three children are a comparison operator and its operands; the last
two are pointers to the subtrees for the outcomes true and false.

note: a pure annotation. There are nine different kinds of these, to identify the
tops and bottoms of loops, scopes, subroutines, and so on.

The sequence is not always completely linear; insns are sometimes collected into
pairs or triples that correspond to target machine instructions with delay slots. Over
a dozen different kinds of (non-note) annotations can be attached to an individual
insn, to identify side effects, specify target machine instructions or registers, keep
track of the points at which values are defined and used, automatically increment
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EXAMPLE I 5.20

An RTL insn sequence

EXAMPLE | 52'

GCD program as a clang
AST

or decrement registers that are used to iterate over an array, and so on. Insns may
also refer to various dynamically allocated structures, including the symbol table.

A simplified insn sequence for the code of Example C-15.19 appears in Fig-
ure C-15.12. The three leading numbers in each insn represent the insn’s unique
id and those of its predecessor and successor, respectively. The fourth, when present,
identifies the insn’s basic block. Fields for the various insn annotations are not
shown. The :SI mode specifier on a memory or register reference indicates access
to a single (4-byte) integer; :DI and :QI modes correspond to double (8-byte) and
quarter (1-byte) integers.

A full explanation of the RTL notation is beyond what we can cover here. As an
example, however, insn 26 loads the memory location found 4 bytes back from
the frame pointer (namely, i) into virtual register 64. The following insn, 27, sets
the memory location found 8 bytes back from the frame pointer (namely, j) to the
result of subtracting register 64 from that same memory location. In parallel (as a
side effect), insn 27 also “clobbers” (overwrites) the contents of virtual condition
code register 17.

In order to generate target code, the back end matches insns against patterns
stored in a semiformal description of the target machine. Both this description
and the routines that manipulate the machine-dependent parts of an insn are
segregated into a relatively small number of separately compiled files. As a result,
much of the compiler back end is machine independent, and need not actually be
modified when porting to a new machine.

Clang AST format

As noted in the main text, the clang front end for LLVM employs a fairly conven-
tional high-level AST format, not unlike gcc’s GENERIC. Figure C-15.13 shows a
simplified version of the tree for our gcd program. The resemblance to Figure 15.2
is immediately apparent. Unlike the GIMPLE code of Figure reffig-high-gimple,
with its explicit gotos, the clang AST nodes encode high-level control structures
explicitly. Each CompoundStmt node has one child for every statement in the
block; a CallExpr node has one child for the function to be called and one for each
argument. Symbol table information is implicit in the declaration nodes of the
tree—in this case, FunctionDecl and VarDecl. The cinit annotation on a VarDecl
node indicates the presence of a child node to specify the initial value.

LLVM IR

LLVM’s IR is central to the design of the compiler suite; it has been carefully
crafted to represent programs in almost any language, to be easily mapped to
almost any modern processor, and to facilitate the full range of modern code
improvement techniques. As explained in system documentation (at llvm.org), it
can be represented, equivalently, as data structures in memory, as compact binary
“bitcode,” or as human-readable pseudo-assembly notation. Programs are normally
passed from one compiler phase to the next as in-memory data structures, but they
can also be exported to—or imported from—bitcode files. The pseudo-assembly
notation is mainly intended for compiler debugging and development.
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(insn 5 2 6 2 (set (reg:QI O ax) (comst_int 0)))
(call_insn 6 5 7 2 (set (reg:SI 0 ax) (call (mem:QI (symbol_ref:DI ("getint"))) (const_int 0))))
(insn 7 6 8 2 (set (reg:SI 60) (reg:SI 0 ax)))
(insn 8 7 9 2 (set (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4))) (reg:SI 60)))
(insn 9 8 10 2 (set (reg:QI 0 ax) (const_int 0)))
(call_insn 10 9 11 2 (set (reg:SI 0 ax) (call (mem:QI (symbol_ref:DI ("getint"))) (comst_int 0))))
(insn 11 10 12 2 (set (reg:SI 61) (reg:SI 0 ax)))
(insn 12 11 13 2 (set (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -8))) (reg:SI 61)))
(jump_insn 13 12 14 2 (set (pc) (label_ref 28)))
(barrier 14 13 30)
(code_label 30 14 15 4 4 "")
(insn 16 15 17 4 (set (reg:SI 62) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4)))))
(insn 17 16 18 4 (set (reg:CCGC 17)
(compare:CCGC (reg:SI 62) (mem/c:SI (plus:DI (reg/f:DI 54) (comst_int -8))))))

(jump_insn 18 17 19 4 (set (pc) (if_then_else (le (reg:CCGC 17) (comnst_int 0)) (label_ref 24) (pc))))
(insn 20 19 21 5 (set (reg:SI 63) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -8)))))
(insn 21 20 22 5 (parallel [

(set (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4)))

(minus:SI (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4))) (reg:SI 63)))

(clobber (reg:CC 17))
ID))
(jump_insn 22 21 23 5 (set (pc) (label_ref 28)))
(barrier 23 22 24)
(code_label 24 23 25 6 3 "")
(insn 26 25 27 6 (set (reg:SI 64) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4)))))
(insn 27 26 28 6 (parallel [

(set (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -8)))

(minus:SI (mem/c:SI (plus:DI (reg/f:DI 54) (comnst_int -8))) (reg:SI 64)))

(clobber (reg:CC 17))
1D
(code_label 28 27 29 7 2 "")
(insn 31 29 32 7 (set (reg:SI 65) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4)))))
(insn 32 31 33 7 (set (reg:CCZ 17)

(compare:CCZ (reg:SI 65) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -8))))))

(jump_insn 33 32 34 7 (set (pc) (if_then_else (ne (reg:CCZ 17) (const_int 0)) (label_ref 30) (pc))))
(insn 35 34 36 8 (set (reg:SI 66) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4)))))
(insn 36 35 37 8 (set (reg:SI 5 di) (reg:SI 66)))
(call_insn 37 36 40 8 (call (mem:QI (symbol_ref:DI ("putint"))) (const_int 0)))
(insn 40 37 41 8 (clobber (reg/i:SI 0 ax)))
(insn 41 40 39 8 (clobber (reg:SI 59 [ <retval> ]1)))
(insn 39 41 42 8 (set (reg/i:SI 0 ax) (reg:SI 59 [ <retval> ])))
(insn 42 39 0 8 (use (reg/i:SI 0 ax)))

Figure [5.12  Simplified textual RTL for the gcd program. Most annotations (more than half the original length) have been
elided here. Register 54 is the frame pointer. Local variable i is at offset —4. Local variable j is at offset —8.
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FunctionDecl
(‘main’ ‘int ()’)

CompoundStmt

:::::

VarDecl
CallExpr ('3 "int’, cinit)
('int’)

| CallExpr
int )

DeclRefExpr (int’) WhileStmt
(‘getint’, 'int )')

DeclRefExpr C‘aIIEx;?r

| 'int ()) ('void)
BinaryOperator DeclRefExpr DeclRefExpr
("int’, "1=') (‘putint’, 'void(int)’) (‘i’, "int’)

/\ CompoundStmt

DeclRefExpr DeclRefExpr
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[fStmt

%\

BinaryOperator BinaryOperator BinaryOperator
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r:/
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.....

('j', 'int’) ('i', 'int’") (‘int’, ("j', 'int’) ("int’,
DeclRefExpr DeclRefExpr DeclRefExpr DeclRefExpr
‘i, 'int’) ('3, 'int’) ('3, 'int’) ‘i, 'int’)

Figure [5.13  Simplified clang AST for the gcd program. Nodes that implicitly dereference variables (lvalues) to obtain their
contents (rvalues) have been elided.

EXAMPLE I 5.22

LLVM IR for the GCD
program.

LLVM IR for our gcd program appears in Figure C-15.14. Unlike the RTL of
Figure C-15.12, which was generated at the low, default level of optimization, the
code here was generated with a -03 command line switch. As a result, variables i
and j are kept in (virtual) registers throughout the computation, rather than being
repeatedly read from and written to memory. Because they remain in memory, SSA
form requires that we assign the proper incoming values into new virtual registers
whenever control paths merge. Specifically, at the top of the loop (label 4), a phi
instruction assigns virtual register %5 (the current location of j) the value from
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define i32 @main() local_unnamed_addr #0 {
%1 = tail call i32 (...) Qgetint() #2
%2 = tail call i32 (...) Ggetint() #2
%3 = icmp eq 132 %1, %2
br il %3, label %13, label %4
4: ; preds = %0, %4
%5 = phi i32 [ %11, %4 1, [ %2, %0 ]
%6 = phi i32 [ %9, %4 1, [ %1, %0 1]
%7 = icmp slt i32 %5, %6
%8 = select il %7, i32 %5, i32 0
%9 = sub nsw i32 %6, %8
%10 = select il %7, i32 0, i32 %6
%11 = sub nsw 132 %5, %10
%12 = icmp eq 132 %9, %11
br i1 %12, label %13, label %4, !1lvm.loop !6
13: ; preds = %4, %0
%14 = phi i32 [ %1, %0 1, [ %9, %41
tail call void @putint(i32 noundef %14) #2
ret i32 0
}

Figure [5.14  Textual LLVM IR for function main in the gcd program, generated at optimization
level -03. Comments begin with a semicolon; metadata begins with an exclamation point.
(Function calls are labeled tail not because they are actually tail recursive, but because they do
not violate any of the rules that would prevent reuse of the stack frame if they were tail recursive.)

register %2 if control has entered from the header block, and from register %11 if
control has come around from the bottom of the loop. A second phi instruction
makes a similar choice for i at the top of the loop, and a third for i at the beginning
of the footer. Among other things, the fact that every virtual register has only one
assignment in the code means that instructions can safely be reordered so long as
operands are always computed before they are used. We never have to worry about
“overwriting” a virtual register before its final use, or about writing values to it out
of order.

In addition to promoting i and j to registers, -03 optimization causes the
compiler to use predication (Section C-5.3.2), rather than branching, for the if...
then ... else in the loop. Specifically, the icmp instruction at the top of the loop
assigns the outcome of the if comparison into virtual register %7. The select
instructions then use this register to chose whether to place a zero or one of j and i,
respectively, into registers %8 and %10. Finally, the sub instructions subtract these
values from i and j, effectively updating one and leaving the other unchanged.

‘/CHECK YOUR UNDERSTANDING

24. Characterize GIMPLE, RTL, clang AST format, LLVM IR, Java bytecode, and
Common Intermediate Language as high-, medium-, or low-level intermediate
forms.
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25.
26.

21.
28.

29.

Name three languages (other than C) for which there exist gcc front ends.

Name three languages (other than C) for which there exist LLVM front ends
but not gcc front ends.

What is the internal IF of gcc’s front ends?

Give brief descriptions of GIMPLE and RTL. How do they differ? Why was
GIMPLE introduced?

Compare RTL and LLVM IR. In what ways does the latter more closely resemble
typical assembly language?
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Dynamic Linking

To be amenable to dynamic linking, a library must either (1) be located at the
same address in every program that uses it, or (2) have no relocatable words in its
code segment, so that the content of the segment does not depend on its address.
The first approach is straightforward but restrictive: it generally requires that we
assign a unique address to every sharable library; otherwise we run the risk that
some newly created program will want to use two libraries that have been given
overlapping address ranges. In Unix System V R3, which took the unique-address
approach, shared libraries could only be installed by the system administrator. This
requirement tended to limit the use of dynamic linking to a relatively small number
of popular libraries. The second approach, in which a shared library can be linked at
any address, requires the generation of position-independent code. It allows users to
employ dynamic linking whenever they want, without administrator intervention.

The cost of user-managed dynamic linking is that executable programs are no
longer self-contained. They depend for correct execution on the availability of
appropriate dynamic libraries at execution time. If different programs are built
with different expectations of (which versions of) which libraries will be available,
conflicts can arise. On Microsoft platforms, where dynamic libraries have names
ending in .d11, compatibility problems are sometimes referred to as “DLL hell.”
The frequency and severity of the problem can be minimized with good software
engineering practice. In particular, a package management system may maintain a
database of dependences between programs and libraries, and among the libraries
themselves. If installer programs use the database correctly, problems will be
detected at install time, when they can reasonably be addressed, rather than at the
arbitrarily delayed point at which a program first attempts to use an incompatible
or missing library.

c-333
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exampLe 15.23
PIC under x86/Linux

[5.7.1 Position-Independent Code

A code segment that contains no relocatable words is said to constitute position-
independent code (PIC). To generate PIC, the compiler must observe the following
rules:

I. Use PC-relative addressing, rather than jumps to absolute addresses, for all
internal branches.

2. Similarly, avoid absolute references to statically allocated data, by using displace-
ment addressing with respect to some standard base register. If the code and
data segments are guaranteed to lie at a known offset from one another, then
the program counter can be used for this purpose. Otherwise, the caller must
initialize some other base register as part of the entry point’s calling sequence.

3. Usean extralevel of indirection for every control transfer out of the PIC segment,
and for every load or store of static memory outside the corresponding data
segment. The indirection allows the (non-PIC) target address to be kept in the
data segment, which is private to each program instance.

Exact details vary among processors, vendors, and operating systems. Conventions
for gce on recent versions of x86 Linux are illustrated in Figure C-15.15. Each
code segment is accompanied by a linkage table—known in Linux as the segment’s
global offset table (GOT). This table lists the locations of all code and data whose
addresses were not statically determined. All processes that use the same library
share a single copy of the library’s code segment, but each process has its own
copy of the library’s GOT. Both the code segment and the GOT can lie at different
locations in the address spaces of different processes, but the offset between the
two must always be the same.

Like the main program, each shared library is typically composed of multiple
compilation units, joined together by a static linker, which resolves internal refer-
ences. Resolution of references from the main program into shared libraries—or
among the libraries themselves—is delayed until load time or run time, and is the
job of the dynamic linker. By construction, shared libraries never make references
back into the main program.

Libraries are permitted to have (process-private) data as well as code, but the
total amount of such data is assumed (in Linux, at least) to be small enough that
the data can be statically linked without wasting significant space. Each process
therefore has a single data segment (shown in the figure at the lower left), containing
the data of the main program and of all the libraries it may call, directly or indirectly.
(Extensions to delay the linking of library data are considered in Exercise C-15.14.)

Focusing for the moment on the dashed arrows of the figure (and ignoring
the dotted arrows), a read of X or Y in main can use a statically resolved address.
A read of X or Y in foo uses PC-relative addressing to find the appropriate slot
in foo’s GOT, and then loads X or Y indirectly. Similar indirection is required
for subroutine calls into dynamically linked libraries. To avoid duplication of
the indirection code, the compiler incorporates a (shared, read-only) procedure
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Figure [5.15 A dynamically linked shared library. Calls to foo and bar are made indirectly, using an address stored in the
global offset tables (GOTs) of main and foo, respectively. Similarly, references to global variables X and Y, when made from
foo, must employ a level of indirection. Resolved values are shown with dashed lines; initial values to support lazy linking
(Section C-15.7.2) are shown with dotted lines. In the prologue of foo, register ebx is set to point to foo's GOT, using
pc-relative arithmetic.

linkage table (PLT) in each code segment. To effect a call to foo, main calls
a stub routine, here named foo_stub. This, in turn, performs an indirect jump
to the address of foo found in main’s GOT. Inside foo, the call to bar is only
slightly more complicated: the compiler must use PC-relative addressing to find
the appropriate slot in foo’s GOT.
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EXAMPLE | 524

PC-relative addressing on
the x86

EXAMPLE I 5.25

Dynamic linking in Linux on
the x86

Most machines—including the x86—can perform branches and calls using PC-
relative addressing. In our Linux example (Figure C-15.15), the machine-language
encoding of call bar_stub in library foo will specify the offset between the call
instruction and the bar_stub location in foo’s PLT.

Many machines can also use PC-relative addressing in load and store instruc-
tions. On the x86-64, for example, the load of X in foo could say rax := *(rip
+ G), where G is the offset from the load instruction to X’s entry in foo’s GOT
(on the x86-64, rip [instruction pointer register] is the name of the program
counter). Unfortunately, the x86-32 does not support PC-relative addressing for
loads and stores. To compensate, each PIC code segment on x86-32 Linux defines
the following tiny subroutine:

get_pc:
ebx := *esp -- load location referred to by esp
ret -- i.e., the return address -- into ebx

Given this definition, the pseudo-instruction ebx := pc + B in Figure C-15.15
can be implemented as

call get_pc
ebx += B

after which ebx can be used as the base for displacement addressing within foo’s
GOT.

[5.7.2 Fully Dynamic (Lazy) Linking

If all or most of the symbols exported by a shared library were always referenced
by the parent program, it might make sense to link the library in its entirety at load
time. When the program began running, its GOTs would then appear as suggested
by the dashed arrows in Figure C-15.15. Certain systems indeed work in this fashion.
In any given execution of a program, however, there may be references to libraries
that are not actually used, because the input data never cause execution to follow
the code path(s) on which the references appear. If these “potentially unnecessary”
references are numerous, we may avoid a significant amount of work by linking
the library lazily on demand. Moreover even in a program that uses all its symbols,
incremental lazy linking may improve the system’s interactive responsiveness by
allowing programs to begin execution faster. A language system that allows the
dynamic creation or discovery of program components (e.g., as in Common Lisp
or Java) must also use lazy linking to delay the resolution of external references in
dynamically compiled components.

When a Linux program first starts running, the data entries in its GOTs are
indeed initialized as previously discussed; all addresses are known, because data
locations are statically assigned. Code entries in the GOTs, however, point back
into the corresponding PLTs, as suggested by the dotted arrows in Figure C-15.15.
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Now consider what happens when main calls foo_stub. The foo_ptr entry
in main’s GOT points to the second instruction of foo_stub—immediately after
the indirect jump. That jump, in other words, ends up targeting the very next
instruction, as if it had not happened at all. The next instruction, for its part, pushes
onto the stack the offset of foo’s entry in main’s GOT. It then jumps (using PC-
relative addressing) to a special entry in the PLT. This entry in turn pushes the
address of main’s GOT and jumps to the dynamic linker, whose address is statically
known. The dynamic linker consults symbol table information found in main’s
executable file. Specifically, it looks up the GOT address and offset that were passed
to it on the stack and discovers that they correspond to foo. It chooses a place
for foo in the process’s address space, creates a (process-specific) foo GOT at the
appropriate offset (using symbol table information from foo’s own object file),
initializes any data locations in that GOT to point to appropriate locations in the
process’s data segment, and initializes code locations in the GOT to point to the
second instructions of the corresponding entries in foo’s PLT.

Now that foo has been given a location in the process’s address space, the
dynamic linker can modify foo’s entry in main’s PLT so that subsequent calls from
main to foo will skip the linking step, and instead follow the single indirection
suggested by the dashed arrow in Figure C-15.15. Last of all, the linker pops its
arguments from the stack (leaving the return address pushed by main in its original
call to foo_stub) and branches directly to foo. When foo completes, it will return
to the correct address in main.

If and when foo calls bar, a similar series of events will take place. The principal
difference is that both the body of foo and the stubs in its PLT must use PC-relative
addressing to access entries in foo’s GOT.

‘/CHECK YOUR UNDERSTANDING
30. Explain the addressing challenge faced by dynamic linking systems.

31. What is position-independent code? What is it good for? What special precau-
tions must a compiler follow in order to produce it?

3). Explain the need for PC-relative addressing in position-independent code.
How is it accomplished on the x86-32?

33. What is the purpose of a linkage table?
34. What is lazy dynamic linking? What is its purpose? How does it work?
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15.12

15.13

15.14

5.15

Exercises

Compare and contrast GIMPLE with the notation we have been using for
abstract grammars (Section 4.1).

PC-relative branches on many processors are limited in range—they can
only target locations within 2% bytes of the current PC, for some k less than
the wordsize of the machine. Explain how to generate position-independent
code that needs to branch farther than this.

We have noted that Linux creates a single data segment containing all the
static data of libraries that might be called (directly or indirectly) by a given
program. The space required for this segment is usually not a problem: most
libraries have little static data—often none at all. Suppose this were not
the case. If we wanted to perform dynamic linking for modules with large
amounts of per-module static data, how could we extend Linux’s dynamic
linking mechanisms to perform fully dynamic (lazy) linking not only of
code, but also of data?

In Example C-9.72 we described how the GNU Ada Translator (gnat) for
the x86 uses dynamically generated code to represent a subroutine closure.
Explain how a similar technique could be used to simplify the mechanism
of Figure C-15.15, if we were willing to modify code segments at run time.
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15.23

15.24

15.25

Explorations

Find the on-line documentation for gcc, which explains both GIMPLE and
RTL, and enumerates command-line flags that will cause the compiler to
dump its intermediate forms to standard output. (Version 4.8.4 of the com-
piler supports 26 such flags for GIMPLE and 67 for RTL.) Using appropriate
flags and a small but nontrivial input program, arrange for the compiler
to dump several versions of both GIMPLE and RTL. Study the output and
describe how it has been changed by the intervening code improvement
phases.

Find out how linking works under your favorite non-Linux system. Can
code be dynamically linked? Can (nonprivileged) users create shared li-
braries? How does the loader or dynamic linker determine which libraries
a program will need? How does it locate their object code? If your compiler
can generate both position-independent and non-position-independent
code, how do the two compare in size and run-time efficiency?

Learn about pointer swizzling [Wil92], originally developed to run programs
on machines with insufficient virtual address space. Explain its connection
to dynamic linking.

Learn about ASIS, the Ada Semantic Interface Specification. How does it
improve on tools based on the earlier Diana notation? How does it work in
gnat?

Learn about MLIR, the Multi-Level Intermediate Representation being
developed as an extension to the LLVM framework. In contrast to LLVM
IR, MLIR aims to represent programs at multiple levels of abstraction, and
in particular to facilitate high-level optimization for GPUs, tensor units,
and other specialized accelerators. Explore the origins of MLIR in Google’s
TPU project. What exactly does MLIR enable that traditional medium- and
low-level IFs do not?
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