
14Scripting

14.3 Scripting the World Wide Web

Much of the content of the World Wide Web—particularly the content that is visible
to search engines—is static: pages that seldom, if ever, change. But hypertext, the
abstract notion on which the Web is based, was always conceived as a way to
represent ‘‘the complex, the changing, and the indeterminate’’ [Nel65]. Much of
the power of the Web today lies in its ability to deliver pages that move, play sounds,
respond to user actions, or—perhaps most important—contain information created
or formatted on demand, in response to the page-fetch request.

From a programming languages point of view, simple playback of recorded
audio or video is not particularly interesting. We therefore focus our attention here
on content that is generated on the fly by a program—a script—associated with an
Internet URI (uniform resource identifier).1 Suppose we type a URI into a browser
on a client machine, and the browser sends a request to the appropriate web server.
If the content is dynamically created, an obvious first question is: does the script
that creates it run on the server or the client machine? These options are known as
server-side and client-side web scripting, respectively.

Server-side scripts are typically used when the service provider wants to retain
complete control over the content of the page, but can’t (or doesn’t want to) create
the content in advance. Examples include the pages returned by search engines,
Internet retailers, auction sites, and any organization that provides its clients with
on-line access to personal accounts. Client-side scripts are typically used for tasks
that don’t need access to proprietary information, and are more efficient if executed
on the client’s machine. Examples include interactive animation, error-checking of
fill-in forms, and a wide variety of other self-contained calculations.

1 The term ‘‘URI’’ is often used interchangeably with ‘‘URL’’ (uniform resource locator), but the
World Wide Web Consortium distinguishes between the two. All URIs are hierarchical (multipart)
names. URLs are one kind of URIs; they use a naming scheme that indicates where to find the
resource. Other URIs can use other naming schemes.

C 295

C 296 Chapter 14 Scripting

#!/usr/bin/perl

print "Content-type: text/html\n\n";
print "<!DOCTYPE html>\n";

print "<html lang=\"en\">\n";
$host = `hostname`; chop $host;
print "<head>\n";
print "<meta charset=\"utf-8\">\n";
print "<title>Status of ", $host, "</title>\n";
print "</head>\n<body>\n";
print "<h1>", $host, "</h1>\n";
print "<pre>\n", `uptime`, "\n", `who`;
print "</pre>\n</body>\n</html>\n";

Figure 14.14 A simple CGI script in Perl. If this script is named status.perl, and is installed
in the server’s cgi-bin directory, then a user anywhere on the Internet can obtain summary
statistics and a list of users currently logged into the server by typing hostname/cgi-bin/status.perl
into a browser window.

14.3.1 CGI Scripts

The original mechanism for server-side web scripting was the Common Gateway
Interface (CGI). A CGI script is an executable program residing in a special
directory known to the web server program. When a client requests the URI
corresponding to such a program, the server executes the program and sends its
output back to the client. Naturally, this output needs to be something that the
browser will understand—typically HTML.

CGI scripts may be written in any language available on the server’s machine,
though Perl is particularly popular: its string-handling and ‘‘glue’’ mechanisms
are ideally suited to generating HTML, and it was already widely available during
the early years of the Web. As a simple if somewhat artificial example, suppose weEXAMPLE 14.77

Remote monitoring with a
CGI script

would like to be able to monitor the status of a server machine shared by some
community of users. The Perl script in Figure C 14.14 creates a web page titled
by the name of the server machine, and containing the output of the uptime and
who commands (two simple sources of status information). The script’s initial
print command produces an HTTP message header, indicating that what follows
is HTML. Sample output from executing the script appears in Figure C 14.15.

CGI scripts are commonly used to process on-line forms. A simple exampleEXAMPLE 14.78
Adder web form with a
CGI script

appears in Figure C 14.16. The form element in the HTML file specifies the URI
of the CGI script, which is invoked when the user hits the Submit button. Values
previously entered into the input fields are passed to the script either as a trailing
part of the URI (for a get-type form) or on the standard input stream (for a post-
type form, shown here).2 With either method, we can access the values using the

14.3.2 Embedded Server-Side Scripts C 297

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Status of sigma.cs.rochester.edu</title>
</head>
<body>
<h1>sigma.cs.rochester.edu</h1>
<pre>
22:10 up 5 days, 12:50, 5 users, load averages: 0.40 0.37 0.31

scott console Feb 13 09:21
scott ttyp2 Feb 17 15:27
test ttyp3 Feb 18 17:10
test ttyp4 Feb 18 17:11
</pre>
</body>
</html>

Status of sigma.cs.rochester.edu

sigma.cs.rochester.edu
22:10 up 5 days, 12:50, 5 users, load averages: 0.40 0.37 0.31

scott console Feb 13 09:21
scott ttyp2 Feb 17 15:27
test ttyp3 Feb 18 17:10
test ttyp4 Feb 18 17:11

Figure 14.15 Sample output from the script of Figure C 14.14. HTML source appears at top;
the rendered page is below.

param routine of the standard CGI Perl library, loaded at the beginning of our
script.

14.3.2 Embedded Server-Side Scripts

Though widely used, CGI scripts have several disadvantages:
The web server must launch each script as a separate program, with potentially
significant overhead (though a CGI script compiled to native code can be very
fast once running).

2 One typically uses post type forms for one-time requests. A get type form appears a little clumsier,
because arguments are visibly embedded in the URI, but this gives it the advantage of repeatability:
it can be ‘‘bookmarked’’ by client browsers.

C 298 Chapter 14 Scripting

<!DOCTYPE html>
<html lang="en">
<head><meta charset="utf-8"><title>Adder</title></head>
<body>
<form action="/cgi-bin/add.perl" method="post">
<p><input name="argA" size=3>First addend

<input name="argB" size=3>Second addend</p>
<p><input type="submit"></p>
</form>
</body>
</html>

Adder

12 First addend
34 Second addend�
 �	Submit

#!/usr/bin/perl

use CGI qw(:standard); # provides access to CGI input fields
$argA = param("argA"); $argB = param("argB"); $sum = $argA + $argB;

print "Content-type: text/html\n\n";
print "<!DOCTYPE html>\n";

print "<html lang=\"en\">\n";
print "<head><meta charset=\"utf-8\"><title>Sum</title></head>\n<body>\n";
print "<p>$argA plus $argB is $sum</p>\n";
print "</body>\n</html>\n";

<!DOCTYPE html>
<html lang="en">
<head><meta charset="utf-8"><title>Sum</title></head>
<body>
<p>12 plus 34 is 46</p>
</body>
</html>

Sum

12 plus 34 is 46

Figure 14.16 An interactive CGI form. Source for the original web page is shown at the upper left, with the rendered page to
the right. The user has entered 12 and 34 in the text fields. When the Submit button is pressed, the client browser sends a
request to the server for URI /cgi-bin/add.perl. The values 12 and 13 are contained within the request. The Perl script, shown in
the middle, uses these values to generate a new web page, shown in HTML at the bottom left, with the rendered page to the
right.

Because the server has little control over the behavior of a script, scripts must
generally be installed in a trusted directory by trusted system administrators;
they cannot reside in arbitrary locations as ordinary pages do.
The name of the script appears in the URI, typically prefixed with the name of
the trusted directory, so static and dynamic pages look different to end users.

14.3.2 Embedded Server-Side Scripts C 299

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Status of <?php echo $host = chop(`hostname`) ?></title>
</head>
<body>
<h1><?php echo $host ?></h1>
<pre>
<?php echo `uptime`, "\n", `who` ?>
</pre>
</body>
</html>

Figure 14.17 A simple PHP script embedded in a web page. When served by a PHP-enabled
host, this page performs the equivalent of the CGI script of Figure C 14.14.

Each script must generate not only dynamic content but also the HTML tags
that are needed to format and display it. This extra ‘‘boilerplate’’ makes scripts
more difficult to write.

To address these disadvantages, most web servers provide a ‘‘module-loading’’
mechanism that allows interpreters for one or more scripting languages to be
incorporated into the server itself. Scripts in the supported language(s) can then be
embedded in ‘‘ordinary’’ web pages. The web server interprets such scripts directly,
without launching an external program. It then replaces the scripts with the output
they produce, before sending the page to the client. Clients have no way to even
know that the scripts exist.

Embeddable server-side scripting languages include PHP, PowerShell (in Mi-
crosoft Active Server Pages), Ruby, Cold Fusion (from Macromedia Corp.), and
Java (via ‘‘Servlets’’ in Java Server Pages). The most common of these is PHP.
Though descended from Perl, PHP has been extensively customized for its target
domain, with built-in support for (among other things) email and MIME encoding,
all the standard Internet communication protocols, authentication and security,
HTML and URI manipulation, and interaction with dozens of database systems.

The PHP equivalent of Figure C 14.14 appears in Figure C 14.17. Most of theEXAMPLE 14.79
Remote monitoring with a
PHP script

text in this figure is standard HTML. PHP code is embedded between <?php and
?> delimiters. These delimiters are not themselves HTML; rather, they indicate a
processing instruction that needs to be executed by the PHP interpreter to generate
replacement text. The ‘‘boilerplate’’ parts of the page can thus appear verbatim;
they need not be generated by print (Perl) or echo (PHP) commands. Note that
the separate script fragments are part of a single program. The $host variable, for
example, is set in the first fragment and used again in the second.

PHP scripts can even be broken into fragments in the middle of structuredEXAMPLE 14.80
A fragmented PHP script statements. Figure C 14.18 contains a script in which if and for statements span

fragments. In effect, the HTML text between the end of one script fragment and
the beginning of the next behaves as if it had been output by an echo command.

C 300 Chapter 14 Scripting

<!DOCTYPE html>
<html lang="en">
<head><meta charset="utf-8"><title>20 numbers</title></head>
<body>
<p>
<?php

for ($i = 0; $i < 20; $i++) {
if ($i % 2) { ?>

<?php
echo " $i"; ?>

<?php
} else echo " $i";

}
?>

</p>
</body>
</html>

Figure 14.18 A fragmented PHP script. The if and for statements work as one might expect,
despite the intervening raw HTML. When requested by a browser, this page displays the numbers
from 0 to 19, with odd numbers written in bold.

Web designers are free to use whichever approach (echo or escape to raw HTML)
seems most convenient for the task at hand.

Self-Posting Forms

By changing the action attribute of the FORM element, we can arrange for theEXAMPLE 14.81
Adder web form with a
PHP script

Adder page of Figure C 14.16 to invoke a PHP script instead of a CGI script:

<form action="add.php" method="post">

The PHP script itself is shown in the top half of Figure C 14.19. Form values are
made available to the script in an associative array (hash table) named _REQUEST.
No special library is required.

Because our PHP script is executed directly by the web server, it can safely resideEXAMPLE 14.82
Self-posting Adder web
form

in an arbitrary web directory, including the one in which the Adder page resides.
In fact, by checking to see how a page was requested, we can merge the form and
the script into a single page, and let it service its own requests! We illustrate this
option in the bottom half of Figure C 14.19.

14.3.3 Client-Side Scripts

While embedded server-side scripts are generally faster than CGI scripts, at least
when start-up cost predominates, communication across the Internet is still too
slow for truly interactive pages. If we want the behavior or appearance of the page

14.3.3 Client-Side Scripts C 301

<!DOCTYPE html>
<html lang="en">
<head><meta charset="utf-8"><title>Adder</title></head>
<body><p>
<?php

$argA = $_REQUEST['argA']; $argB = $_REQUEST['argB'];
$sum = $argA + $argB;
echo "$argA plus $argB is $sum\n";

?>
</p></body></html>

<!DOCTYPE html>
<html lang="en">
<head><meta charset="utf-8">
<?php

$argA = $_REQUEST['argA']; $argB = $_REQUEST['argB'];
if ($argA == "" || $argB == "") {

?>
<title>Adder</title></head><body>
<form action="adder.php" method="post">
<p><input name="argA" size="3"> First addend

<input name="argB" size="3"> Second addend</p>
<p><input type="submit"></p>
</form></body></html>

<?php
} else {

?>
<title>Sum</title></head><body><p>

<?php
$sum = $argA + $argB;
echo "$argA plus $argB is $sum\n";

?>
</p></body></html>

<?php
}

?>

Figure 14.19 An interactive PHP web page. The script at top could be used in place of the
script in the middle of Figure C 14.16. The lower script in the current figure replaces both the
web page at the top and the script in the middle of Figure C 14.16. It checks to see if it has
received a full set of arguments. If it hasn’t, it displays the fill-in form; if it has, it displays results.

C 302 Chapter 14 Scripting

to change as the user moves the mouse, clicks, types, or hides or exposes windows,
we really need to execute some sort of script on the client’s machine.

Because they run on the web designer’s site, CGI scripts and, to a lesser extent,
embeddable server-side scripts can be written in many different languages. All
the client ever sees is standard HTML. Client-side scripts, by contrast, require an
interpreter on the client’s machine. By virtue of having been ‘‘in the right place
at the right time’’ historically, JavaScript is supported with at least some degree of
consistency by almost all of the world’s web browsers. Moreover, given the number
of legacy browsers still running, and the difficulty of convincing users to upgrade
or to install new plug-ins, it has been difficult for any other option for client-side
scripting to gain traction. Only recently, with the advent of WebAssembly, has the
dominance of JavaAcript begun to wane.

Figure C 14.20 shows a page with embedded JavaScript that imitates (on theEXAMPLE 14.83
Adder web form in
JavaScript

client) the behavior of the Adder scripts of Figures C 14.16 and C 14.19. Function
doAdd is defined in the header of the page so it is available throughout. In particular,
it will be invoked when the user clicks on the Calculate button. By default, the
input values are character strings; we use the parseInt function to convert them
to integers. The parentheses around (argA + argB) in the final assignment state-
ment then force the use of integer addition. The other occurrences of + are string
concatenation. To disable the usual mechanism whereby input data are submitted
to the server when the user hits the enter or return key, we have specified a dummy
behavior for the onsubmit attribute of the form.

Rather than replace the page with output text, as our CGI and PHP scripts
did, we have chosen in our JavaScript version to append the output at the bottom.
The HTML SPAN element provides a named place in the document where this
output can be inserted, and the getElementById JavaScript method provides us
with a reference to this element. The HTML Document Object Model (DOM),
standardized by the World Wide Web Consortium (W3C), specifies a very large
number of other elements, attributes, and user actions, all of which are accessible in
JavaScript. Through them scripts can, at appropriate times, inspect or alter almost
any aspect of the content, structure, or style of a page.

14.3.4 Java Applets and Other Embedded Elements

As an alternative to requiring client-side scripts to interact with the DOM of a
web page, many browsers once supported an embedding mechanism that allowed a
browser plug-in to assume responsibility for some rectangular region of the page,
in which it could then display whatever it wanted. In other words, plug-ins were
less a matter of scripting the browser than of bypassing it entirely. Historically,
they were widely used for content—animations and video in particular—that were
poorly supported by early versions of HTML.

Programs designed to be run by a Java plug-in were commonly known as applets.
Consider, for example, an applet to display a clock with moving hands. LegacyEXAMPLE 14.84

Embedding an applet in a
web page

browsers supported several different applet tags, but as of HTML5 the standard
syntax looked like this:

14.3.4 Java Applets and Other Embedded Elements C 303

<!DOCTYPE html>
<html lang="en">
<head><meta charset="utf-8"><title>Adder</title>
<script type="text/javascript">
function doAdd() {

argA = parseInt(document.adder.argA.value)
argB = parseInt(document.adder.argB.value)
x = document.getElementById('sum')
while (x.hasChildNodes())

x.removeChild(x.lastChild) // delete old content
t = document.createTextNode(argA + " plus "

+ argB + " is " + (argA + argB))
x.appendChild(t)

}
</script>
</head>
<body>
<form name="adder" onsubmit="return false">
<p><INPUT name="argA" size=3> First addend

<INPUT name="argB" size=3> Second addend</p>
<p><input type="button" onclick="doAdd()" value="Calculate"></p>
</form>
<p></p>
</body>
</html>

Adder

12 First addend
34 Second addend�
 �	Calculate

12 plus 34 is 46

Figure 14.20 An interactive JavaScript web page. Source appears at left. The rendered version on the right shows the
appearance of the page after the user has entered two values and hit the Calculate button, causing the output message to
appear. By entering new values and clicking again, the user can calculate as many sums as desired. Each new calculation will
replace the output message.

<embed type="application/x-java-applet" code="Clock.class">

The type attribute informed the browser that the embedded element was expected
to be a Java applet; the code element provided the applet’s URI. Additional at-
tributes could be used to specify such properties as the required interpreter version
number and the size of the needed display space.

As one might infer from the existence of the type attribute, embed tags (and
similar object tags) can request execution by a variety of plug-ins—not just a Java
Virtual Machine. Historically, the most widely used plug-in was Adobe’s Flash
Player. Though scriptable, Flash Player is more accurately described as a multimedia
display engine than a general purpose programming language interpreter.

Over time, plug-ins have proven to be a major source of browser security
bugs. Almost any nontrivial plug-in requires access to operating system services—
network IO, local file space, graphics acceleration, and so on. Providing just enough
service to make the plug-in useful—but not enough to allow it to do any harm—has
proven extremely difficult. To address this problem, extensive multimedia support
has been built into HTML5, allowing the browser itself to assume responsibility for

C 304 Chapter 14 Scripting

much of what was once accomplished with plug-ins. Security is still a problem, but
the number of software modules that must be trusted—and the number of points
at which an attacker might try to gain entrance—is significantly reduced. Almost
all browsers now disable Java by default. Most disable Flash as well.

3CHECK YOUR UNDERSTANDING

47. Explain the distinction between server-side and client-side web scripting.

48. List the tradeoffs between CGI scripts and embedded PHP.

49. Why are CGI scripts usually installed only in a special directory?

50. Explain how a PHP page can service its own requests.

51. Why might we prefer to execute a web script on the server rather than the
client? Why might we sometimes prefer the client instead?

52. What is the HTML Document Object Model? What is its significance for client-
side scripting?

53. What is the relationship between JavaScript and Java?

54. What is an applet? Why are applets usually not considered an example of
scripting?

55. Why are Java applets and Flash objects no longer commonly supported by web
browsers?

DESIGN & IMPLEMENTATION

14.12 JavaScript and Java
Despite its name, JavaScript has no connection to Java beyond some superficial
syntactic similarity. The language was originally developed by Brendan Eich at
Netscape Corp. in 1995. Eich called his creation LiveScript, but the company
chose to rename it as part of a joint marketing agreement with Sun Microsystems,
prior to its public release. Trademark on the JavaScript name is actually owned
by Oracle, which acquired Sun in 2010.

Netscape’s browser was the market leader in 1995, and JavaScript usage grew
extremely fast. To remain competitive, developers at Microsoft added JavaScript
support to Internet Explorer, but they used the name JScript instead, and they
introduced a number of incompatibilities with the Netscape version of the lan-
guage. A common version was standardized as ECMAScript by the European
standards body in 1997 (and subsequently by the ISO), but major incompatibili-
ties remained in the Document Object Models provided by different browsers.
These have been gradually resolved through a series of standards from the W3C
and WHATWG, but legacy pages and legacy browsers continue to plague web
developers.

14.3.5 XSLT C 305

14.3.5 XSLT

Most readers will undoubtedly have had the opportunity to write—or at least
to read—the HTML (hypertext markup language) used to compose web pages.
HTML has, for the most part, a nested structure in which fragments of documents
(elements) are delimited by tags that indicate their purpose or appearance. We
saw in Section 14.2.2, for example, that top-level headings are delimited with
<h1> and </h1>. HTML was inspired by an older standard known as SGML
(standard generalized markup language), developed in the 1980s and used, among
other things, to computerize both the Oxford English Dictionary and the technical
documentation of Boeing Corp.

DESIGN & IMPLEMENTATION

14.13 How far can you trust a script?
Security becomes an issue whenever code is executed using someone else’s
resources. On a hosting machine, web servers are usually installed with very
limited access rights, and with only a limited view of the host’s file system. This
strategy limits the set of pages accessible through the server to a well-defined
subset of what would be visible to users logged into the hosting machine directly.
By contrast, CGI scripts are separate executable programs, and can potentially
run with the privileges of whoever installs them. To prevent users on the hosting
machine from accidentally or intentionally passing their privileges to arbitrary
users on the Internet, most system administrators configure their machines
so that CGI scripts must reside in a special directory, and be installed by a
trusted user. Embedded server-side scripts can reside in any file because they
are guaranteed to run with the (limited) rights of the server itself.

A larger risk is posed by code downloaded over the Internet and executed
on a client machine. Because such code is in general untrusted, it must be
executed in a carefully controlled environment, sometimes called a sandbox (a
place where a child can safely play), to prevent it from doing any damage. As a
general rule, embedded JavaScript cannot access the local file system, memory
management system, or network, nor can it manipulate documents from other
sites. Java applets, likewise, have only limited ability to access external resources.
Reality is a bit more complicated, of course: Sometimes a script needs access to,
say, a temporary file of limited size, or a network connection to a trusted server.
Mechanisms exist to certify sites as trusted, or to allow a trusted site to certify the
trustworthiness of pages from other sites. Scripts on pages obtained through a
trusted mechanism may then be given extended rights. Such mechanisms must
be used with care. Finding the right balance between security and functionality
remains one of the central challenges of the Web, and of distributed computing
in general. (More on this topic can be found in Sections 15.2.3 and 16.2.4, and
in Explorations 16.21 and 16.22.)

C 306 Chapter 14 Scripting

In the early days of the Web, SGML was clearly too complex and formal for
web pages, which needed to be written by hand and rendered in real time by
slow computers. The simpler HTML evolved in an informal and ad hoc way, with
incompatible extensions made by competing vendors. Standardization has been a
long and difficult process: incompatibilities among browsers continue to frustrate
web designers, and several features of the language that have been deprecated3 in
the most recent standards are nonetheless still widely used. Other features, while
not deprecated, are widely regarded in hindsight to have been mistakes.

Probably the biggest problem with HTML is that it does not adequately dis-
tinguish between the content and the presentation (appearance) of a document.
As a trivial example, web designers sometimes use <i> . . . </i> tags to requestEXAMPLE 14.85

Content versus
presentation in HTML

that text be set in an italic font, when . . . (emphasis) would be more
appropriate. A browser for the visually impaired might choose to emphasize text
with something other than italics, and might render book titles (also often specified
with <i> . . . </i>) in some entirely different fashion. More significantly, many
web designers use tables (<table> . . . </table>) to control the relative position-
ing of elements on a page, when the content isn’t tabular at all. As the Web has
extended across cell phones, televisions, tablets, watches, and audio-only devices,
the need to distinguish between content and presentation has become increasingly
essential.

This is where XML stepped in. A streamlined descendant of SGML, developed
by the W3C in the mid to late 1990s, XML has at least three important advantages
over HTML for data and document representation: (1) its syntax and semantics are
more regular and consistent, and more consistently implemented across platforms;
(2) it is extensible, meaning that users can define new tags; (3) it specifies content
only, leaving presentation to a companion standard known as XSL (extensible
stylesheet language). XSLT is a portion of XSL devoted to transforming XML:
selecting, reorganizing, and modifying tags and the elements they delimit—in
effect, scripting the processing of data represented in XML.

Internet Alphabet Soup

Learning about web standards can be a daunting task: there is an enormous number
of buzzwords, standards, and multiletter abbreviations. The standards—and the
relationships among them—are also moving targets, promulgated by groups whose
interests are not always in sync. To start, it may help to note that each of the major
markup languages—SGML, HTML, and XML—has a corresponding stylesheet
language: DSSSL, CSS, and XSL, respectively. A stylesheet language is used to
control the presentation of a document, separate from its content. Stylesheet
languages are essential for SGML and XML; without them there is no way to know
whether a <RECORD> represents a database entry, an antique phonograph album,
or an Olympic achievement, much less how to display it. HTML is less dependent

3 A deprecated feature is one whose use is officially discouraged, but permitted on a temporary basis,
to ease the transition to new and presumably better alternatives.

14.3.5 XSLT C 307

on stylesheets, but most professionally maintained web sites use CSS to create a
uniform ‘‘look and feel’’ across a collection of pages without embedding redundant
information in every page.

SGML is still used for large-scale projects in the business world, though many
newer projects have chosen to use XML or JSON, the JavaScript Object Notation.
JSON is more compact and self-descriptive than XML, and is commonly used
to transmit structured data between web servers and clients. It does not have a
stylesheet language comparable to XSL, however. HTML continues to evolve (see
sidebar C 14.14). HTML5, codified by the World Wide Web Consortium in 2014,
added extensive support for multimedia content, and specified both general and
XML-compliant versions of the syntax.

XML and XHTML

As a general rule, the syntax of XML is simpler than that of SGML or HTML. To
allow XML tools (XSLT in particular) to be used to process web pages, the HTML5
standard defines a restricted version of the HTML syntax, known as XHTML. With
a few minor exceptions, any web page that can be specified in HTML can also be
specified in XHTML, and vice versa. The content-type header that precedes a
web page when transmitted over the Internet tells the browser which parser to use:

DESIGN & IMPLEMENTATION

14.14 W3C and WHATWG
Standardization efforts for HTML have a complicated history. With the comple-
tion in 1998 of the XML 1.0 specification, the World Wide Web Consortium
(W3C) focused on XHTML, in an effort to push the world toward a ‘‘cleaned-
up,’’ XML-compliant version of HTML. Over the next few years, this strategy
proved increasingly contentious. In 2004, a group of influential individuals from
Apple, Mozilla, and Opera split off to form a separate Web Hypertext Application
Technology Working Group (WHATWG), with the goal of evolving HTML in a
way that preserved complete backward compatibility and interoperability. In
2006, the W3C reconsidered its position, and began to work with WHATWG
toward what eventually became HTML5. Both groups continued to work on
HTML evolution, largely but not entirely in sync. In 2019, they agreed that
future development would belong to WHATWG, though W3C continues to
participate.

While W3C would prefer a dated, finalized document (which it would num-
ber HTML5), WHATWG’s ‘‘Living Standard’’ for HTML has been continuously
evolving (without version numbers) since 2012. WHATWG believes that the
standard should reflect without necessarily dictating current practice, as em-
bodied in the browsers of all major vendors. Both the W3C and WHATWG
distinguish carefully between what a conforming document should contain and
what a conforming browser should be able to render: the latter is significant
superset of the former.

C 308 Chapter 14 Scripting

text/html means ‘‘regular’’ HTML; application/xhtml+xml means XHTML.
In practice, the principal differences between the notations are that XHTML is
harder for human beings to write, because the rules are stricter, and XML parsers
are designed to reject (and decline to render) any page that is not well formed
(syntactically correct). HTML parsers are designed to tolerate—and do something
reasonable with—even the worst ‘‘tag soup.’’ With some care, it is possible to write
pages that will be processed correctly by both HTML and XHTML parsers; such
pages are said to use polyglot markup (syntax).

In any well-formed XML document (including those written in XHTML), tags
must either constitute properly nested, matched pairs, or be explicit singletons,
which end with a ‘‘/>’’ delimiter. Similarly, the values of attributes (key–value
pairs embedded within tags) must always be specified with quotes. The followingEXAMPLE 14.86

Well-formed XHTML fragment, for example, is well formed (though incomplete) XHTML:

<q id="favorite">I defy the tyranny of precedent</q>

(Clara Barton)

Here the quotation element (<q> . . . </q>) is nested inside the emphasis element
(. . .). Moreover the ‘‘break’’ element (
), which usually causes
subsequent text to start on a new line, is explicitly a singleton; it has a slash before its
closing ‘‘>’’ delimiter. (To avoid confusing certain legacy browsers, one sometimes
needs a space in front of the slash.) The example fragment would be malformed if
the slash were missing, if the opening <q> tags were reversed (<q>), or
if the attribute value "favorite" had not be enclosed in quote marks. An HTML
parser would tolerate these errors; an XML parser will not.

The set of tags to be used in an XML document can be specified by naming a
document type definition (DTD) in the document’s DOCTYPE header, or by naming
an XML Schema in an attribute of the document’s top-level tag. (XML Schemas are a
newer format, but DTDs remain in widespread use.) Among other things, a DTD or
Schema indicates which tags are allowed, whether those tags are pairs or singletons,
whether they permit attributes, and whether any attributes are mandatory. If a
document has no DTD or Schema, it is said to define a DTD implicitly by virtue of
which tags are actually used. Implicit definition suffices for the examples in this
chapter.

Because tags must nest in XML, a document has a natural tree-based structure.
Figure C 14.21 shows the source for a small but complete polyglot HTML5 doc-EXAMPLE 14.87

XHTML to display a
favorite quote

ument, together with the tree it represents. There are three kinds of nodes in the
tree: elements (delimited by tags in the source), text, and attributes. The internal
(nonleaf) nodes are all elements. Everything nested between the beginning and
ending tags of an element is an attribute or child of that element in the tree.

The root of our document, named ‘‘/’’ by convention, has one child—the html
element. This in turn has three attributes—xmlns, lang, and xml:lang—and
two child elements—head and body. The xmlns attribute specifies a URI for our
document’s namespace. This serves a purpose similar to that of C++ namespaces
or Java packages (Section 3.8): it allows us to give tag names a disambiguating

14.3.5 XSLT C 309

<!DOCTYPE html>
<html xmlns="https://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<meta charset="UTF-8" />
<title>Favorite Quote</title>
</head>
<body>
<p>
<q id="favorite">I defy
the tyranny of precedent</q>

(Clara Barton)
</p>
</body>
</html>

html

bodyhead

titlemeta p

text

xml:langlangxmlns

id

charset em br text

q

text

/

Figure 14.21 A complete XHTML document and its corresponding tree. Child elements are shown with solid lines, attributes
with dashed lines.

prefix: xhtml:table versus furniture:table. With the value we have specified
for the xmlns attribute, any tag in the document that doesn’t have a prefix will
automatically be interpreted as being in the xhtml namespace. The lang and
xml:lang tags specify the source language (English) for HTML and XML parsers,
respectively.

XSLT and XPath

XSL (extensible stylesheet language) can be thought of as a language for specifying
what to do with an XML document. It has four sublanguages, called XSLT, XPath,
XSL-FO, and XQuery. XSLT is a scripting language that takes XML as input and
produces textual output—often transformed XML or HTML, but potentially other
formats as well.

XPath is a language used to name things in XML documents. XPath names
frequently appear in the attributes of XSLT elements. Returning to Figure C 14.21,EXAMPLE 14.88

XPath names for XHTML
elements

the quotation element of our document could be named in XPath as /html/body/
p/em/q. The emphasis element and its break and text-node siblings, together, could
be named as /html/body/p/*. XPath includes a rich set of naming mechanisms,
including absolute (from the root) and relative (from the current node) navigation,
wildcards, predicates, substring and regular expression manipulation, and counting
and arithmetic functions. We will see some of these in the extended example
below.

XSL-FO (XSL formatting objects) is a set of tags to specify the layout (presenta-
tion) of a document, in terms of pages, regions (e.g., header, body, footer), blocks
(paragraph, table, list), lines, and in-line elements (character, image). An XSLT
script might be used to add XSL-FO tags to an XML document, or to transform a
document that already has XSL-FO tags in it—perhaps to split a long single-page

C 310 Chapter 14 Scripting

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="bib.xsl"?>
<bibliography>

<book>
<author>Guido van Rossum</author>
<editor>Fred L. Drake, Jr.</editor>
<title>The Python Language Reference Manual (version 3.2)</title>
<publisher>Network Theory, Ltd.</publisher>
<address>Bristol, UK</address>
<year>2011</year>
<note>Available at <uri>https://books.google.com/books/about

/The_Python_Language_Reference_Manual.html?id=Ut4BuQAACAAJ</uri></note>
</book>
<article>

<author>John K. Ousterhout</author>
<title>Scripting: Higher-Level Programming for the 21st Century</title>
<journal>Computer</journal>
<volume>31</volume>
<number>3</number>
<month>March</month>
<year>1998</year>
<pages>23–30</pages>

</article>
<inproceedings>

<author>Theodor Holm Nelson</author>
<title>Complex Information Processing: A File Structure for the

Complex, the Changing, and the Indeterminate</title>
<booktitle>Proceedings of the Twentieth ACM National Conference</booktitle>
<month>August</month>
<year>1965</year>
<address>Cleveland, OH</address>
<pages>84–100</pages>

</inproceedings>
<inproceedings>

<author>Stephan Kepser</author>
<title>A Simple Proof for the Turing-Completeness of XSLT and XQuery</title>
<booktitle>Proceedings, Extreme Markup Languages 2004</booktitle>
<address>Montréal, Canada</address>
<year>2004</year>
<month>August</month>
<note>Available at <uri>https://citeseerx.ist.psu.edu/document?

doi=5f7ad1d9c17c01e3321b44ad996ff3fcd3ddbea3</uri></note>
</inproceedings>

Figure 14.22 A bibliography in XML. References (two books, a journal article, and three conference papers) appear in arbitrary
order. The two URIs have been wrapped to fit on the printed page. (continued)

14.3.5 XSLT C 311

<inproceedings>
<author>David G. Korn</author>
<title><code>ksh</code>: An Extensible High Level Language</title>
<booktitle>Proceedings of the USENIX Very High Level Languages Symposium</booktitle>
<address>Santa Fe, NM</address>
<year>1994</year>
<month>October</month>
<pages>129–146</pages>

</inproceedings>
<book>

<author>Tom Christiansen</author>
<author>brian d foy</author>
<author>Larry Wall</author>
<author>Jon Orwant</author>
<title>Programming Perl</title>
<edition>fourth</edition>
<publisher>O’Reilly Media</publisher>
<address>Sebastopol, CA</address>
<year>2012</year>

</book>
</bibliography>

Figure 14.22 (continued)

document intended for the Web into a multipage document intended for printing
on paper.

XQuery is a language in which to frame information-retrieval questions for
a database stored in XML format. (In a bibliographic database, for example, we
might use XQuery look for journal articles written since the turn of the century.)
The purpose and behavior of XQuery parallel those of SQL, the standard language
used for relational database queries. For the sake of simplicity, we will not use
XSL-FO or XQuery in our extended example. Rather we will peruse an entire XML
document, using XSLT to format its content as HTML.

An XML document can explicitly specify an XSLT script that should be used to
transform or format it. This is a common but somewhat restrictive way to go about
things: by tying a single stylesheet to the XML file we compromise the separation
between content and presentation that was a principal motivation for creating
XML in the first place. An alternative is to use client-side JavaScript or server-side
PHP to invoke the XSLT processor, passing the XML document and the XSLT
script as arguments. As of 2023, the XSLT 3 is the newest version of the language.
XSLT 1 support is included in all major browsers; newer versions typically require
a JavaScript library.

Extended Example: Bibliographic Formatting

As an example of a task for which we might realistically use XSLT, consider theEXAMPLE 14.89
Creating a reference list
with XSLT

creation of a bibliographic reference list. Figure C 14.22 contains XML source for

C 312 Chapter 14 Scripting

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="https://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
<html><head><title>Bibliography</title></head><body><h1>Bibliography</h1>

<xsl:for-each select="bibliography/*"><xsl:sort select="title"/>
<xsl:apply-templates select="."/>

</xsl:for-each>
</body></html>

</xsl:template>

<xsl:template match="bibliography/article">
<q><xsl:apply-templates select="title/node()"/>,</q>
by <xsl:call-template name="author-list"/>.
<xsl:apply-templates select="journal/node()"/>
<xsl:text> </xsl:text><xsl:apply-templates select="volume/node()"/>
:<xsl:apply-templates select="number/node()"/>
(<xsl:apply-templates select="month/node()"/><xsl:text> </xsl:text>

<xsl:apply-templates select="year/node()"/>),
pages <xsl:apply-templates select="pages/node()"/>.
<xsl:if test="note"><xsl:apply-templates select="note/node()"/>.</xsl:if>

</xsl:template>

<xsl:template match="bibliography/book">
<xsl:apply-templates select="title/node()"/>,
by <xsl:call-template name="author-list"/>.
<xsl:apply-templates select="publisher/node()"/>,
<xsl:apply-templates select="address/node()"/>,
<xsl:if test="edition">

<xsl:apply-templates select="edition/node()"/> edition, </xsl:if>
<xsl:apply-templates select="year/node()"/>.
<xsl:if test="note"><xsl:apply-templates select="note/node()"/>.</xsl:if>

</xsl:template>

<xsl:template match="bibliography/inproceedings">
<q><xsl:apply-templates select="title/node()"/>,</q>
by <xsl:call-template name="author-list"/>.
In <xsl:apply-templates select="booktitle/node()"/>
<xsl:if test="pages">, pages <xsl:apply-templates select="pages/node()"/></xsl:if>
<xsl:if test="address">, <xsl:apply-templates select="address/node()"/></xsl:if>
<xsl:if test="month">, <xsl:apply-templates select="month/node()"/></xsl:if>
<xsl:if test="year">, <xsl:apply-templates select="year/node()"/></xsl:if>.
<xsl:if test="note"><xsl:apply-templates select="note/node()"/>.</xsl:if>

</xsl:template>

Figure 14.23 Bibliography stylesheet in XSL. This script will generate HTML when applied to a bibliography like that of
Figure C 14.22. (continued)

14.3.5 XSLT C 313

<xsl:template name="author-list"> <!-- format author list -->
<xsl:for-each select="author|editor">

<xsl:if test="last() > 1 and position() = last()"> and </xsl:if>
<xsl:apply-templates select="./node()"/>
<xsl:if test="self::editor"> (editor)</xsl:if>
<xsl:if test="last() > 2 and last() > position()">, </xsl:if>

</xsl:for-each>
</xsl:template>

<xsl:template match="uri"> <!-- format link -->
<a><xsl:attribute name="href"><xsl:value-of select="."/></xsl:attribute>
<xsl:value-of select="substring-after(., 'https://')"/>

</xsl:template>

<xsl:template match="@*|node()"> <!-- default: copy content -->
<xsl:copy><xsl:apply-templates select="@*|node()"/></xsl:copy>

</xsl:template>

</xsl:stylesheet>

Figure 14.23 (continued)

such a list. (Field names have been borrowed from BibTEX [Lam94, App. B].) The
document begins with a declaration to specify the XML version and character
encoding, and a processing instruction to specify the XSL stylesheet to be used
to format the file. These declarations are included for the benefit of tools that
process the document; they aren’t part of the XML source itself. (Note the syntactic
resemblance to the processing instructions used in Section C 14.3.2 to provide input
to the PHP interpreter.)

At the top level, the bibliography element consists of a series of book,
article, and inproceedings elements, each of which may contain elements
for author and editor names, title, publisher, date and address, and so on. Some
elements may contain nested uri elements, which specify on-line links. Characters
that cannot be represented in ASCII are shown as Unicode character entities, as
described in Sidebar 7.3.

Figure C 14.23 contains an XSLT stylesheet (script) to format the bibliography
as HTML, which may then be rendered in a browser. This script was named at
the beginning of the XML document (Figure C 14.22). In a manner analogous to
that of the XML document, the script begins with a declaration to specify the XML
version and character encoding, and an xsl:stylesheet element to specify the
XSL version and namespace. The remainder of the script contains a mix of XSL and
HTML elements. The XSL tags all specify the xsl: namespace explicitly. They are
recognized by the XSLT processor. Elements from other namespaces are treated as
ordinary text, to be copied through to the output when encountered.

The fundamental construct in XSLT is the template, which specifies a set of
instructions to be applied to nodes in an XML source tree. Templates are typically

C 314 Chapter 14 Scripting

invoked by executing an apply-templates or a call-template instruction in
some other template. Each invocation has a concept of current node. The execution
as a whole begins by invoking an initial template with the root of the source tree
(/) as current node. In our bibliographic example, the initial template is the one at
the top of the script, because its match attribute is the XPath expression "/". The
body of the initial template begins with a string of HTML elements and text. This
string is copied directly to the output. The for-each element, however, is an XSLT
instruction, so it is executed.

The select attribute of the for-each element uses an XPath expression
("bibliography/*") to build a node set consisting of all top-level entries in
our bibliography. Other expressions could have been used if we wanted to
be selective: "bibliography/*[year>=2000]" would match only recent en-
tries; "bibliography/*[note]" would match only entries with note elements;
"bibliography/article|bibliography/book" would match only articles and
books.

The nested sort instruction forces the selected node set to be ordered alpha-
betically by title. The body of the for-each is then executed with each entry
in turn selected as current node. The body contains a recursive invocation of
apply-templates, bracketed by HTML list tags (. . .). These tags are
copied to the output, with the result of the recursive call nested in between.

So how does the recursive call work? Its select attribute, like that of for-each,
uses XPath to build a node set. In this case it is the trivial node set containing only
".", the current node of the current iteration of for-each. The XSLT processor
searches for a template that matches this node. We have created three appropriate
candidates, one for each kind of bibliographic entry. When it finds the matching
template, the processor invokes it, with an updated notion of current node.

Each of our three main templates contains a set of instructions to format its kind
of entry (article, book, conference paper). Most of the instructions use additional
invocations of apply-templates to format individual portions of an entry (author,
title, publisher, etc.). Interspersed in these instructions are snippets of text and
HTML elements. In several cases we use an if instruction to generate output
only when a given XML element is present in the source. In most of these the
recursive call uses the XPath node() function to select all children of the element
in question.

White space is ignored when it comes between the end of one instruction and
the beginning of the next. To force white space into the output in this case, we must
delimit it with <text> . . . </text> tags. Extra white space (e.g., after the ends of
sentences) is specified with the ‘‘nonbreaking space’’ character entity, .

Three extra templates end our script. The most interesting of these serves to
format author lists. It has a name attribute rather than a match attribute, and is
invoked with call-template rather than apply-templates. A called template
always takes the current node of the caller—in this case the node that represents
a bibliographic entry. Internally, the author list template executes a for-each in-
struction that selects all child nodes representing authors or editors. The for-each,
in turn, uses the XPath last() and position() functions to determine how many

14.3.5 XSLT C 315

<html><head><title>Bibliography</title></head>
<body><h1>Bibliography</h1>

<q>A Simple Proof for the Turing-Completeness of XSLT and XQuery,</q>
by Stephan Kepser. In Proceedings, Extreme Markup Languages
2004, Montréal, Canada, August, 2004. Available at
<a href="https://citeseerx.ist.psu.edu/document?doi=

5f7ad1d9c17c01e3321b44ad996ff3fcd3ddbea3">citeseerx.ist.psu.edu
/document?doi=5f7ad1d9c17c01e3321b44ad996ff3fcd3ddbea3.

<q>Complex Information Processing: A File Structure for the Complex,
the Changing, and the Indeterminate,</q> by Theodor Holm Nelson.
In Proceedings of the Twentieth ACM National Conference,
pages 84–100, Cleveland, OH, August, 1965.

<q><code>ksh</code>: An Extensible High Level Language,</q> by David
G. Korn. In Proceedings of the USENIX Very High Level Languages
Symposium, pages 129–146, Santa Fe, NM, October, 1994.

Programming Perl, by Tom Christiansen, brian d foy, Larry Wall,
and Jon Orwant. O’Reilly Media, Sebastopol, CA, fourth
edition, 2012.

<q>Scripting: Higher-Level Programming for the 21st Century,</q> by
John K. Ousterhout. Computer 31:3 (March 1998), pages
23–30.

The Python Language Reference Manual (version 3.2), by Guido
van Rossum and Fred L. Drake, Jr. (editor). Network Theory, Ltd.,
Bristol, UK, 2011. Available at <a href="https://books.google.com/books/about

/The_Python_Language_Reference_Manual.html?id=Ut4BuQAACAAJ">books.google.com/books
/about/The_Python_Language_Reference_Manual.html?id=Ut4BuQAACAAJ.

</body></html>

Figure 14.24 Result of applying the stylesheet of Figure C 14.23 to the bibliography of Figure C 14.22.

names there are, and where each name falls in the list. It inserts the word ‘‘and’’
between the final two names, and puts commas after all names but the last in lists
of three or more.

The template with match="uri" serves to format URIs that appear anywhere
in the XML source. It creates an HTML link in the output, but uses the XPath
substring-after function to strip the leading https:// off the visible text. XPath
provides a variety of similar functions for string and regular expression manipu-
lation. The value-of instruction copies the contents of the selected node to the
output, as a character string.

Our final template serves as a default case. The XPath expression "@*|node()"
will match any attribute or other node in the XML source. Inside, the copy instruc-

C 316 Chapter 14 Scripting

Bibliography

Bibliography

1. ‘‘A Simple Proof for the Turing-Completeness of XSLT and XQuery,’’ by Stephan Kepser. In
Proceedings, Extreme Markup Languages 2004, Montréal, Canada, August, 2004. Available at
https://citeseerx.ist.psu.edu/document?doi=5f7ad1d9c17c01e3321b44ad996ff3fcd3ddbea3.

2. ‘‘Complex Information Processing: A File Structure for the Complex, the Changing, and the
Indeterminate,’’ by Theodor Holm Nelson. In Proceedings of the Twentieth ACM National
Conference, pages 84–100, Cleveland, OH, August, 1965.

3. ksh: An Extensible High Level Language, by David G. Korn. In Proceedings of the USENIX Very
High Level Languages Symposium, pages 129–146, Santa Fe, NM, October, 1994.

4. Programming Perl, by Tom Christiansen, brian d foy, Larry Wall, and Jon Orwant. O’Reilly
Media, Sebastopol, CA, fourth edition, 2012.

5. ‘‘Scripting: Higher-Level Programming for the 21st Century,’’ by John K. Ousterhout. Computer
31:3 (March 1998), pages 23–30.

6. The Python Language Reference Manual (version 3.2), by Guido van Rossum and Fred L. Drake,
Jr. (editor). Network Theory, Ltd., Bristol, UK, 2011. Available at https://books.google.com
/books/about/The_Python_Language_Reference_Manual.html?id=Ut4BuQAACAAJ.

Figure 14.25 Rendered version of the HTML in Figure C 14.24.

tion copies the node’s tags, if any, to the output, with the result of a recursive call to
apply-templates in between. The "@*|node()" on the recursive call selects a
node set consisting of all the current node’s attributes and children. The end result
is that any XML elements in the source that are delimited by tags for which we do
not have special templates will be regenerated in the output just as they appear in
the source. The recursion stops at text nodes and attributes, which are the leaves of
the XML tree.

HTML output from our script appears in Figure C 14.24. The rendered web
page appears in Figure C 14.25.

While lengthy by the standards of this text, our example illustrates only a frac-
tion of the capabilities of XSLT. In the standard categorization of programming
languages, the notation is strongly declarative: values may have names, but there
are no mutable variables, and no side effects. There is a limited looping mechanism
(for-each), but the real power comes from recursion, and from recursive traversal
of XML trees in particular.

3CHECK YOUR UNDERSTANDING

56. Explain the relationships among SGML, HTML, and XML. What are their
corresponding stylesheet languages?

57. Why does XML work so hard to distinguish between content and presentation?

14.3.5 XSLT C 317

58. What are the four main components of XSL? What are their respective pur-
poses?

59. What is XHTML? How does it differ from ‘‘ordinary’’ HTML?

60. Explain the correspondence between XML documents and trees.

61. What does it mean for an XML document to be well formed?

62. Explain the distinctions (syntactic and semantic) among elements, declara-
tions, and processing instructions in XML. Also explain the distinctions among
elements, tags, and attributes.

63. Summarize the execution model of XSLT. In a nutshell, how does it work?

64. Explain the difference between applying templates and calling them in XSLT.

14Scripting

14.6 Exercises

14.15 Explain the circumstances under which it makes sense to realize an inter-
active task on the Web as a CGI script, an embedded server-side script, or
a client-side script. For each of these implementation choices, give three
examples of tasks for which it is clearly the preferred approach.

14.16 (a) Write a web page with embedded PHP to print the first 10 rows of
Pascal’s triangle (see Example C 17.10 if you don’t know what this is).
When rendered, your output should look like Figure C 14.26.

(b) Modify your page to create a self-posting form that accepts the number
of desired rows in an input field.

(c) Rewrite your page in JavaScript.
14.17 Create a fill-in web form that uses a JavaScript implementation of the Luhn

formula (Exercise C 4.27) to check for typos in credit card numbers. (But
don’t use real credit card numbers; homework exercises don’t tend to be
very secure!)

14.18 (a) Modify the code of Figure C 14.20 (Example C 14.83) so that it replaces
the form with its output, as the CGI and PHP versions of Figures C 14.16
and C 14.19 do.

(b) Modify the CGI and PHP scripts of Figures C 14.16 and C 14.19 (Exam-
ples C 14.78 and C 14.82) so they appear to append their output to the
bottom of the form, as the JavaScript version of Figure C 14.20 does.

14.19 Modify the XSLT of Figure C 14.23 to do one or more of the following:
(a) Alter the titles of conference papers so that only first words, words that

follow a dash or colon (and thus begin a subtitle), and proper nouns are
capitalized. You will need to adopt a convention by which the creator
of the document can identify proper nouns.

C 319

C 320 Chapter 14 Scripting

Pascal’s Triangle

Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

Figure 14.26 Pascal’s triangle rendered in a web page (Exercise C 14.16).

(b) Sort entries by the last name of the first author or editor. You will
need to adopt a convention by which the creator of the document can
identify compound last names (‘‘von Neumann,’’ for example, should
be alphabetized under ‘v’).

(c) Allow bibliographic entries to contain an abstract element, which
when formatted appears as an indented block of text in a smaller font.

(d) In addition to the book, article, and inproceedings elements, add
support for other kinds of entries, such as manuals, technical reports,
theses, newspaper articles, web sites, and so on. You may want to draw
inspiration from the categories supported by BibTEX [Lam94, App. B].

(e) Format entries according to some standard style convention (e.g., that
of the Chicago Manual of Style [chicagomanualofstyle.org/book/ed17/
part3/ch14/toc.html] or the ACM Transactions [acm.org/publications/
authors/submissions]).

14.20 Suppose bibliographic entries in Figure C 14.22 contain a mandatory key
element, and that other documents can contain matching cite elements.
Create an XSLT script that imitates the work of BibTEX. Your script should
(a) read an XML document, find all the cite elements, collect the keys

they contain, and replace them with bibref elements that contain
small integers instead.

(b) read a separate XML bibliography document, extract the entries with
matching keys, and write them, in sorted order, to a new (and probably
smaller) bibliography.

14.6 Exercises C 321

The small numbers in the bibref elements of the new document from (a)
should match the corresponding numbered entries in the new bibliography
from (b).

14.21 Write a program that will read an XHTML file and print an outline of its
contents, by extracting all <title>, <h1>, <h2>, and <h3> elements, and
printing them at varying levels of indentation. Write
(a) in C or Java
(b) in sed or awk
(c) in Perl, Python, or Ruby
(d) in XSLT
Compare and contrast your solutions.

14Scripting

14.7 Explorations

14.32 Learn about Dart, a language developed at Google. Initially intended as a
successor to JavaScript, Dart is now supported only as a language in which
to develop code that will be translated into JavaScript. What explains the
change in strategy?

14.33 Learn more about WebAssembly. Why has it been successful when previous
proposed alternatives to JavaScript were not?

14.34 Learn more about DTDs and XML Schemas. Compare the DTD and XML
Schema definitions of XHTML. What appear to the prospects for migrating
to the newer specification language?

14.35 Academics often keep lists of publications in multiple places and formats:
an on-line web page, a printable resume, a BibTEX database for paper writ-
ing [Lam94, App. B]. Using XSLT, build a set of tools that will construct
these lists automatically from a single XML source file.

14.36 Learn about XSL-FO. Use it to reimplement Example C 14.89. Your new
version should be a two-stage process: one XSLT script should add format-
ting tags to the XML bibliography; a second should convert the tagged
bibliography to XHTML. Try to make these stages as general as possible:
you should be able to modify the appearance of the output list by changing
the first script only. You should also be able to write alternative versions of
the second script that generate output in formats other than XHTML (e.g.,
LaTeX).

14.37 Learn more about the history of W3C and WHATWG. What are the compar-
ative advantages and disadvantages of their approaches to standardization?
Do you find yourself more in sympathy with one approach or the other?
How large are the technical differences between the most recent versions of
the HTML standards? Are these differences significant enough to pose a
problem for web developers?

C 323

