
13Concurrency

13.5 Message Passing

While shared-memory concurrent programming is common on small-scale multi-
core and multiprocessor machines, most programs that run on clusters, supercom-
puters, or geographically distributed machines are currently based on messages. In
Sections C 13.5.1 through C 13.5.3 we consider three principal issues in message-
based computing: naming, sending, and receiving. In Section C 13.5.4 we look
more closely at one particular combination of send and receive semantics, namely
remote procedure call. Most of our examples will be drawn from the Ada, Erlang,
Go, and Rust programming languages, the Java network library, and the MPI library
package.

13.5.1 Naming Communication Partners

To send or receive a message, one must generally specify where to send it to, orEXAMPLE 13.54
Naming processes, ports,
and entries

where to receive it from: communication partners need names for (or references
to) one another. Names may refer directly to a thread or process. Alternatively,
they may refer to an entry or port of a module, or to some sort of socket or channel
abstraction. We illustrate these options in Figure C 13.19.

The first naming option—addressing messages to processes—appears in Hoare’s
original CSP (Communicating Sequential Processes) [Hoa78], an influential pro-
posal for simple communication mechanisms. It also appears in Erlang and in
MPI. Each MPI process has a unique id (an integer), and each send or receive
operation specifies the id of the communication partner. MPI implementations
are required to be reentrant; a process can safely be divided into multiple threads,
each of which can send or receive messages on the process’s behalf.

The second naming option—addressing messages to ports—appears in Ada. AnEXAMPLE 13.55
entry calls in Ada Ada entry call of the form t.foo(args) sends a message to the entry named foo

in task (thread) t (t may be either a task name or the name of a variable whose
value is a pointer to a task). As we saw in Section 13.2.3, an Ada task resembles

C 271

C 272 Chapter 13 Concurrency

(a)

(b) (c)

Figure 13.19 Three common schemes to name communication partners. In (a), processes
name each other explicitly. In (b), senders name an input port of a receiver. The port may be
called an entry or an operation. The receiver is typically a module with one or more threads inside.
In (c), senders and receivers both name an independent channel abstraction, which may be called
a connection or a mailbox.

a module; its entries resemble subroutine headers nested directly inside the task.
A task receives a message that has been sent to one of its entries by executing an
accept statement (to be discussed in Section C 13.5.3). Every entry belongs to
exactly one task; all messages sent to the same entry must be received by that one
task.

The third naming option—addressing messages to channels—appears in Go,EXAMPLE 13.56
Channels in Go Occam, and Rust. (Though their concurrency features are loosely based on CSP,

both Go and Occam differ from Hoare’s proposal in several concrete ways, includ-
ing the use of channels.) Channel declarations in Go are supported with the chan
type constructor:

var c1 chan int

This code declares c1 to be an (initially nil) reference to a channel. A channel
value can be created with the built-in function make:

c1 = make(chan int)

Typically the declaration and initialization appear together:

var c1 = make(chan int)

Here Go infers the type of c1 from the initialization expression.
To send a message on a channel, a thread uses the binary ‘‘arrow’’ operator <-

with a channel variable on the left and a message on the right:

c1 <- 3

To receive, it uses <- as a unary operator, with the channel on the right:

13.5.1 Naming Communication Partners C 273

my_int = <-c1

To indicate that no further messages will be forthcoming, a thread can close a
channel. A receiving thread can check for this possibility by assigning a receive
expression into a pair, the second element of which is a Boolean:

my_int, ok = <-c1
if (ok) {

// use my_int ...

For the common idiom in which a server thread is willing to accept requestsEXAMPLE 13.57
Remote invocation in Go from any of many possible client threads, each request message can include a

reference to the channel on which to send a response:

type request struct {
name string
reply_to chan string

}
...
// Assume a server thread is listening on chan 'service'
...
var c = make(chan string, 1) // create channel for response
service <- request{"Alice", c} // send look-up request for Alice
println(<-c) // receive response on c

Rust channels, unlike those of Go and Occam, have only a single receiver. MoreEXAMPLE 13.58
Channels in Rust precisely, the receiving end of a channel is owned by a single thread. The sending

end, by default, has a single owner as well, but unlike the receiving end it can be
cloned:

let (tx, rx) = mpsc::channel(); // new channel
// tx is the sending end; rx is the receiving end

for t in 0..2 { // execute twice (for t = 0 and t = 1)
let txc = tx.clone();
thread::spawn(move || {

txc.send(123 + t).unwrap();
});

}

let v1 = rx.recv().unwrap();
let v2 = rx.recv().unwrap();
println!("{} {}", v1, v2); // prints 123 124 or 124 123

Here recv returns a Result<T>—a datatype that can be either a previously sent
value or a RecvError<T>, where T in this case is the integer type. The call to
unwrap returns the value or raises a fatal error. The call to send, likewise, returns

C 274 Chapter 13 Concurrency

a Result<()>—an empty value or a SendError<T>; the unwrap serves simply to
catch the error.

As might be expected in Rust’s type system (Section 8.5.5), sending a value
on a channel transfers ownership from the sending thread to the receiving. The
following will not compile:

let s = String::from("boo!");
tx.send(s).unwrap();
println!("{}", s); // not allowed!

The error message from the compiler explains that type String does not implement
the Copy trait, so v cannot be accessed after the send. A send of a (trivially copied)
integer would work just fine, as would a send of s.clone().

Internet Messaging

Java’s standard java.net library provides two styles of message passing, corre-
sponding to the UDP and TCP Internet protocols. UDP is the simpler of the two.
It is a datagram protocol, meaning that each message is sent to its destination inde-
pendently and unreliably. The network software will attempt to deliver it, but makes
no guarantees. Moreover two messages sent to the same destination (assuming
they both arrive) may arrive in either order. UDP messages use port-based naming
(Figure C 13.19b): each message is sent to a specific Internet protocol (IP) address
and port number.1 The TCP protocol also uses port-based naming, but only for
the purpose of establishing connections (Figure C 13.19c), which it then uses for all
subsequent communication. Connections deliver messages reliably and in order.

To send or receive UDP messages, a Java thread must create a datagram socket:EXAMPLE 13.59
Datagram messages in Java

DatagramSocket mySocket = new DatagramSocket(portId);

The parameter of the DatagramSocket constructor is optional; if it is not specified,
the operating system will choose an available port. Typically servers specify a port
and clients allow the OS to choose. To send a UDP message, a thread says

DatagramPacket myMsg = new DatagramPacket(buf, len, addr, port);
... // initialize message
mySocket.send(myMsg);

The parameters to the DatagramPacket constructor specify an array of bytes buf,
its length len, and the Internet address and port of the receiver. Receiving is
symmetric:

1 Every publicly visible machine on the Internet has its own unique address. Though a transition to
128-bit addresses has been underway for some time, many sites still use 32-bit integers, usually
printed as four period-separated fields (e.g., 192.5.54.209). Internet name servers translate symbolic
names (e.g., gate.cs.rochester.edu) into numeric addresses. Port numbers are also integers,
but are local to a given Internet address. Ports 1024 through 4999 are generally available for
application programs; larger and smaller numbers are reserved for servers.

13.5.1 Naming Communication Partners C 275

mySocket.receive(myMsg);
... // parse content of myMsg

For TCP communication, a server typically ‘‘listens’’ on a port to which clientsEXAMPLE 13.60
Connection-based
messages in Java

send requests to establish a connection:

ServerSocket myServerSocket = new ServerSocket(portId);
Socket clientConnection = myServerSocket.accept();

The accept operation blocks until the server receives a connection request from
a client. Typically a server will immediately fork a new thread to communicate
with the client; the parent thread loops back to wait for another connection with
accept.

A client sends a connection request by passing the server’s symbolic name and
port number to the Socket constructor:

Socket serverConnection = new Socket(hostName, portId);

Once a connection has been created, a client and server in Java typically call
methods of the Socket class to create input and output streams, which support
all of the standard Java mechanisms for text I/O (Section C 8.7.3):

BufferedReader in = new BufferedReader(
new InputStreamReader(clientConnection.getInputStream()));

PrintStream out =
new PrintStream(clientConnection.getOutputStream());

// This is in the server; the client would make streams out
// of serverConnection.
...
String s = in.readLine();
out.println("Hi, Mom\n");

Among all the message-passing mechanisms we have considered, datagrams are
the only one that does not provide some sort of ordering constraint. In general,
most message-passing systems guarantee that messages sent over the same ‘‘com-
munication path’’ arrive in order. When naming processes explicitly, a path links a
single sender to a single receiver. All messages from that sender to that receiver
arrive in the order sent. When naming ports, a path links an arbitrary number of
senders to a single receiver. Messages that arrive at a port in a given order will be
seen by receivers in that order. Note, however, that while messages from the same
sender will arrive at a port in order, messages from different senders may arrive
in arbitrary orders.2 When naming channels, a path links all the senders that can

2 Suppose, for example, that process A sends a message to port p of process B, and then sends a
message to process C, while process C first receives the message from A and then sends its own
message to port p of B. If messages are sent over a network with internal delays, and if A is allowed

C 276 Chapter 13 Concurrency

use the channel to all the receivers that can use it. A Java TCP connection has a
single OS process at each end, but there may be many threads inside, each of which
can use its process’s end of the connection. The connection functions as a queue:
send (enqueue) and receive (dequeue) operations are ordered, so that everything
is received in the order it was sent.

13.5.2 Sending

One of the most important issues to be addressed when designing a send operation
is the extent to which it may block the caller: once a thread has initiated a send
operation, when is it allowed to continue execution? Blocking can serve at least
three purposes:
Resource management: A sending thread should not modify outgoing data until

the underlying system has copied the old values to a safe location. Most systems
block the sender until a point at which it can safely modify its data, without
danger of corrupting the outgoing message.

Failure semantics: Particularly when communicating over a long-distance net-
work, message passing is more error-prone than most other aspects of com-
puting. Many systems block a sender until they are able to guarantee that the
message will be delivered without error.

Return parameters: In many cases a message constitutes a request, for which a
reply is expected. Many systems block a sender until a reply has been received.

When deciding how long to block, we must consider synchronization semantics,
buffering requirements, and the reporting of run-time errors.

Synchronization Semantics

On its way from a sender to a receiver, a message may pass through many interme-
diate steps, particularly if traversing the Internet. It first descends through several
layers of software on the sender’s machine, then through a potentially large number
of intermediate machines, and finally up through several layers of software on the
receiver’s machine. We could imagine unblocking the sender after any of these
steps, but most of the options would be indistinguishable in terms of user-level
program behavior. If we assume for the moment that a message-passing systemEXAMPLE 13.61

Three main options for
send semantics

can always find buffer space to hold an outgoing message, then our three rationales
for delay suggest three principal semantic options:
No-wait send: The sender does not block for more than a small, bounded period of

time. The message-passing implementation copies the message to a safe location
and takes responsibility for its delivery.

to send its message to C before its first message has reached port p, then it is possible for B to
hear from C before it hears from A. This apparent reversal of ordering could easily happen on the
Internet, for example, if the message from A to B traverses a satellite link, while the messages from
A to C and from C to B use ocean-floor fiber-optic cables.

13.5.2 Sending C 277

(a)

send

receive

(b)

request

(c)

reply

send

receive receive

Figure 13.20 Synchronization semantics for the send operation: no-wait send (a), synchro-
nization send (b), and remote-invocation send (c). In each diagram we have assumed that
the original message arrives before the receiver executes its receive operation; this need not in
general be the case.

Synchronization send: The sender waits until its message has been received.
Remote-invocation send: The sender waits until it receives a reply.

These three alternatives are illustrated in Figure C 13.20.
No-wait send appears in Erlang and its successor Elixir, in Rust, and in the

Java Internet library. Synchronization send appears in Occam and, by default, in
Go. (If a Go channel is declared with an explicit buffering capacity, however, no-
wait send is used.) Remote-invocation send appears in Ada and in Occam. MPI
provides an implementation-oriented hybrid of no-wait send and synchronization
send: a send operation blocks until the data in the outgoing message can safely
be modified. In implementations that do their own internal buffering, this rule
amounts to no-wait send. In other implementations, it amounts to synchronization
send. The programmer has the option, if desired, to insist on no-wait send or
synchronization send; performance may suffer on some systems if the request is
different from the default.

Buffering

In practice, of course, no message-passing system can provide a version of send
that never waits (unless of course it simply throws some messages away). If we
imagine a thread that sits in a loop sending messages to a thread that never receives
them, we quickly see that unlimited amounts of buffer space would be required. At
some point, any implementation must be prepared to block an overactive sender,
to keep it from overwhelming the system. Such blocking is a form of backpressure.
Milder backpressure can also be applied by reducing a thread’s scheduling priority
or by increasing the (still bounded) delay before a ‘‘no-wait’’ send returns.

C 278 Chapter 13 Concurrency

For any fixed amount of buffer space, it is possible to design a program that
requires a larger amount of space to run correctly. Imagine, for example, that theEXAMPLE 13.62

Buffering-dependent
deadlock

message-passing system is able to buffer n messages on a given communication path.
Now imagine a program in which A sends n + 1 messages to B, followed by one
message to C. C then sends one message to B, on a different communication path.
Finally, B insists on receiving the message from C before receiving the messages
from A. If A blocks after message n, implementation-dependent deadlock will
result. The best that an implementation can do is to provide a sufficiently large
amount of space that realistic applications are unlikely to find the limit to be a
problem.

For synchronization send and remote-invocation send, buffer space is not
generally a problem: the total amount of space required for messages is bounded
by the number of threads, and there are already likely to be limits on how many
threads a program can create. A thread that sends a reply message can always
be permitted to proceed: we know that we shall be able to reuse the buffer space
quickly, because the thread that sent the request is already waiting for the reply.

Error Reporting

If the underlying message-passing system is unreliable, a language or library willEXAMPLE 13.63
Acknowledgments typically employ acknowledgment messages to verify successful transmission (Fig-

ure C 13.21). If an acknowledgment is not received within a reasonable amount of
time, the implementation will typically resend. If several attempts fail to elicit an
acknowledgment, an error will be reported.

DESIGN & IMPLEMENTATION

13.11 The semantic impact of implementation issues
The inability to buffer unlimited amounts of data and, likewise, to report errors
synchronously to a sender that has continued execution are only the most recent
of many examples we have seen in which pragmatic implementation issues may
restrict the language semantics available to the programmer. Other examples
include limitations on the length of source lines or variable names (Section 2.1.1);
limits on the memory available for data (whether global, stack, or heap allocated)
and for recursive function evaluation (Section 3.2); the lack of ranges in case
statement labels (Section 6.4.2); in reverse and constant step sizes for for
loops (Section 6.5.1); limits on set universe size (to accommodate bit vectors—
Section 8.4); limited procedure nesting (to accommodate displays—Section 9.1);
the pointer-only restriction on opaque exports in Modula-2 (Section 10.2.1);
and the lack of nested threads or of unrestricted arms on a cobegin statement
(to avoid the need for cactus stacks—Section 9.5.1). Some of these limitations are
reflected in the formal semantics of the language. Others (generally those that
vary most from one implementation to another) restrict the set of semantically
valid programs that the system will run correctly.

13.5.2 Sending C 279

Client Server Sender Receiver
request

ack

message

ack

reply

ack

. . .

Figure 13.21 Acknowledgment messages for error detection. In the absence of piggy-backing,
remote-invocation send (left) may require four underlying messages; synchronization send (right)
may require two.

As long as the sender of a message is blocked, errors that occur in attempting
to deliver a message can be reflected back as exceptions, or as status information
in result parameters or global variables. Once a sender has continued, there is no
obvious way in which to report any problems that arise. Like limits on message
buffering, this dilemma poses semantic problems for no-wait send. For UDP,
the solution is to state that messages are unreliable: if something goes wrong,
the message is simply lost, silently. For TCP, the ‘‘solution’’ is to state that only
‘‘catastrophic’’ errors will cause a message to be lost, in which case the connection
will become unusable and future calls will fail immediately. An even more drastic
approach was taken in the original version of MPI: certain implementation-specific
errors could be detected and handled at run time, but in general if a message could
not be delivered then the program as a whole was considered to have failed. Newer
versions of MPI provide a richer set of error-reporting facilities that can be used,
with some effort, to build fault-tolerant programs.

Emulation of Alternatives

All three varieties of send can be emulated by the others. To obtain the effect of
remote-invocation send, a thread can follow a no-wait send of a request with a
receive of the reply, as we saw in Example C 13.57. Similar code will allow us to
emulate remote-invocation send using synchronization send. To obtain the effect
of synchronization send, a thread can follow a no-wait send with a receive of a
high-level acknowledgment, which the receiver will send immediately upon receipt
of the original message. To obtain the effect of synchronization send using remote-
invocation send, a thread that receives a request can simply reply immediately,
with no return parameters.

To obtain the effect of no-wait send using synchronization send or remote-
invocation send, we must interpose a buffer process (the message-passing analogue
of our shared-memory bounded buffer) that replies immediately to ‘‘senders’’ or
‘‘receivers’’ whenever possible. The space available in the buffer process makes
explicit the resource limitations that are always present below the surface in imple-
mentations of no-wait send.

C 280 Chapter 13 Concurrency

Syntax and Language Integration

In the emulation examples above, our hypothetical syntax assumed a library-based
implementation of message passing. Because send, receive, accept, and so on
are ordinary subroutines in such an implementation, they usually take a fixed,
static number of parameters, two of which typically specify the location and size
of the message to be sent. To send a message containing values held in more than
one program variable, the programmer may need to explicitly gather, or marshal,
those values into the fields of a record. On the receiving end, the programmer
may then need to scatter (unmarshal) the values back into program variables.
By contrast, a concurrent programming language can provide message-passing
operations whose ‘‘argument’’ lists can include an arbitrary number of values to
be sent. Moreover, the compiler can arrange to perform type checking on those
values, using techniques similar to those employed for subroutine linkage across
compilation units (to be described in Section 15.6.2). Finally, as we shall see in
Section C 13.5.3, an explicitly concurrent language can employ non-procedure-call
syntax—for example, to couple a remote-invocation accept and reply in such a way
that the reply doesn’t have to explicitly identify the accept to which it corresponds.

DESIGN & IMPLEMENTATION

13.12 Emulation and efficiency
Unfortunately, user-level emulations of alternative send semantics are seldom as
efficient as optimized implementations using the underlying primitives. Suppose
for example that we wish to use remote-invocation send to emulate synchro-
nization send. Suppose further that our implementation of remote-invocation
send is built on top of network software that needs acknowledgments to ver-
ify message delivery. After sending a reply, the server’s run-time system will
wait for an acknowledgment from the client. If a server thread can work for
an arbitrary amount of time before sending a reply, then the run-time system
will need to send separate acknowledgments for the request and the reply. If a
programmer uses this implementation of remote-invocation send to emulate
synchronization send, then the underlying network may end up transmitting a
total of four messages (more if there are any transmission errors). By contrast, a
‘‘native’’ implementation of synchronization send would require only two under-
lying messages. In some cases the run-time system for remote-invocation send
may be able to delay transmission of the first acknowledgment long enough to
‘‘piggy-back’’ it on the subsequent reply if there is one; in this case an emulation
of synchronization send may transmit three underlying messages instead of
only two. We consider the efficiency of emulations further in Exercise C 13.36
and Exploration C 13.55.

13.5.3 Receiving C 281

13.5.3 Receiving

Probably the most important dimension on which to categorize mechanisms for
receiving messages is the distinction between explicit receive operations and the
implicit receipt described in Section 13.2.3. Among the languages and systems we
have been using as examples, none provides implicit receipt, but it appears in a
variety of research languages, and in some of the RPC systems we will consider in
Section C 13.5.4).

With implicit receipt, every message that arrives at a given port (or over a given
channel) will create a new thread of control, subject to resource limitations (any
implementation will have to stall incoming requests when the number of threads
grows too large). With explicit receipt, a message will be queued until some already-
existing thread indicates a willingness to receive it. At any given point in time
there may be a potentially large number of messages waiting to be received. Most
languages and libraries with explicit receipt allow a thread to exercise some sort of
selectivity with respect to which messages it wants to consider.

In MPI, every message includes the id of the process that sent it, together with
an integer tag specified by the sender. A receive operation specifies a desired
sender id and message tag. Only matching messages will be received. In many
cases receivers specify ‘‘wild cards’’ for the sender id and/or message tag, allowing
any of a variety of messages to be received. Special versions of receive also allow a
process to test (without blocking) to see if a message of a particular type is currently
available (this operation is known as polling), or to ‘‘time out’’ and continue if a
matching message cannot be received within a specified interval of time.

Because they are languages instead of library packages, Ada, Erlang/Elixir, Go,
and Occam are able to use special, non-procedure-call syntax for selective message
receipt. Moreover because messages are built into the naming and typing system,
these languages are able to receive selectively on the basis of port/channel names
and parameters, rather than the more primitive notion of tags. In all four languages,
the selective receive construct is a special form of guarded command, as described
in Section C 6.7.

Figure C 13.22 contains code for a bounded buffer in Ada 83. Here an activeEXAMPLE 13.64
Bounded buffer in Ada 83 ‘‘manager’’ thread executes a select statement inside a loop. (Recall that it is also

possible to write a bounded buffer in Ada using protected objects, without a manager
thread, as described in Section 13.4.3.) The Ada accept statement receives the
in and in out parameters (Section 9.3.1) of a remote invocation request. At the
matching end, accept returns the in out and out parameters as a reply message.
A client task would communicate with the bounded buffer using an entry call:

-- producer: -- consumer:
buffer.insert(3); buffer.remove(x);

The select statement in our buffer example has two arms. The first arm may
be selected when the buffer is not full and there is an available insert request;
the second arm may be selected when the buffer is not empty and there is an

C 282 Chapter 13 Concurrency

task buffer is
entry insert(d : in bdata);
entry remove(d : out bdata);

end buffer;

task body buffer is
SIZE : constant integer := 10;
subtype index is integer range 1..SIZE;
buf : array (index) of bdata;
next_empty, next_full : index := 1;
full_slots : integer range 0..SIZE := 0;

begin
loop

select
when full_slots < SIZE =>

accept insert(d : in bdata) do
buf(next_empty) := d;

end;
next_empty := next_empty mod SIZE + 1;
full_slots := full_slots + 1;

or
when full_slots > 0 =>

accept remove(d : out bdata) do
d := buf(next_full);

end;
next_full := next_full mod SIZE + 1;
full_slots := full_slots - 1;

end select;
end loop;

end buffer;

Figure 13.22 Bounded buffer in Ada, with an explicit manager task.

available remove request. Selection among arms is a two-step process: first the
guards (when expressions) are evaluated, then for any that are true the subsequent
accept statements are considered to see if a message is available. (The guard in
front of an accept is optional; if missing it behaves as when true =>.) If both
of the guards in our example are true (the buffer is partly full) and both kinds
of messages are available, then either arm of the statement may be executed, at
the discretion of the implementation. (For a discussion of issues of fairness in the
choice among true guards, see Sidebar C 6.10.)

Every select statement must have at least one arm beginning with acceptEXAMPLE 13.65
Timeout and distributed
termination

(and optionally when). In addition, it may have three other types of arms:

13.5.3 Receiving C 283

when condition => delay how_long
other_statements

...
or when condition => terminate
...
else ...

A delay arm may be selected if no other arm becomes selectable within how_long
seconds. (Ada implementations are required to support delays as long as 1 day
or as short as 20 ms.) A terminate arm may be selected only if all potential
communication partners have already terminated or are likewise stuck in select
statements with terminate arms. Selection of the arm causes the task that was
executing the select statement to terminate. An else arm, if present, will be
selected when none of the guards are true or when no accept statement can be
executed immediately. A select statement with an else arm is not permitted to
have any delay arms. In practice, one would probably want to include a terminate
arm in the select statement of a manager-style bounded buffer.

In Go, a bounded buffer is trivial: it’s just a buffered channel:EXAMPLE 13.66
Bounded buffer in Go

type bdata struct {
n int // or whatever

}
var buffer = make(chan bdata, 10) // space for ten items of type bdata
...
buffer <- bdata{3} // insert
...
my_int = (<-buffer).n // remove

To illustrate language features, we can also build a bounded buffer with an explicit
thread, an array, and a pair of default (unbuffered) channels, in a manner similar
to the Ada example of Figure C 13.22, but with synchronization send instead of
remote invocation. Code for this alternative appears in Figure C 13.23. Unlike
built-in buffered channels, it could easily be augmented to support functionality like
priority-based (as opposed to FIFO) queueing, or methods to clear the buffer or to
query the number of messages currently queued. To use the basic insert/remove
operations, we might write:

var b = make_buffer()
...
b.insert(bdata{3}) // insert
...
my_int = b.remove().n // remove

As in the Ada example, requests are processed by an active manager thread
(called a ‘‘goroutine’’ in Go), here started with the go command. The select
statement in Go does not support explicit guards; we have achieved a similar effect
in Figure C 13.23 by setting the ic and rc channels to nil when they should not

C 284 Chapter 13 Concurrency

type buffer struct {
full_slots, next_full, next_empty int
buf [SIZE]bdata
insert_c chan bdata
remove_c chan chan bdata

}
func manager(b *buffer) {

var ic chan bdata = b.insert_c
var rc chan chan bdata = nil
for {

select { // at least one of ic and rc will always be non-nil
case d := <-ic: // := means "declare and initialize"

b.buf[b.next_empty] = d
b.next_empty = (b.next_empty + 1) % SIZE
b.full_slots++
rc = b.remove_c // there is definitely data to remove
if b.full_slots == SIZE { ic = nil }

case c := <-rc:
c <- b.buf[b.next_full]
b.next_full = (b.next_full + 1) % SIZE
b.full_slots--
ic = b.insert_c // there is definitely space to fill
if b.full_slots == 0 { rc = nil }

}
}

}
func make_buffer() (b *buffer) { // return value has name 'b'

b = new(buffer)
b.full_slots = 0
b.next_full = 0
b.next_empty = 0
b.insert_c = make(chan bdata)
b.remove_c = make(chan chan bdata)
go manager(b) // create active manager thread
return

}
func (b *buffer) insert(e bdata) {

b.insert_c <- e // send data to manager
}
func (b *buffer) remove() bdata {

var c = make(chan bdata)
b.remove_c <- c // send temporary channel to manager
return <-c // receive and return response

}

Figure 13.23 Bounded buffer with an explicit manager thread in Go. The insert and remove
functions serve as methods of buffer b. Note that in the absence of additional functionality (not
shown), this code would better be replaced by trivial use of a buffered channel with capacity
SIZE. Also, if using this version, we would probably want a way to terminate the manager thread
when the buffer is no longer needed.

13.5.3 Receiving C 285

buffer(Max, Free, Q) ->
receive

{insert, D, Client} when Free > 0 ->
Client ! ok, % send ack
buffer(Max, Free-1, queue:in(D, Q)); % enqueue

{remove, Client} when Free < Max ->
{{value, D}, NewQ} = queue:out(Q), % dequeue
Client ! D, % send element
buffer(Max, Free+1, NewQ)

end.

Figure 13.24 Bounded buffer in Erlang. Variables (names that can be instantiated with a value)
begin with a capital letter ; constants begin with a lower-case letter. Queue operations (in, out)
are provided by the standard Erlang library. Typing is dynamic. The send operator (!) is as in
CSP and Occam. Each clause of the receive ends with a tail recursive call.

be selected. Because we have used synchronization send—channels insert_c
and remove_c have zero capacity—there is an asymmetry between the handling
of insert and remove requests: the former need only send the manager data; the
latter must send a channel reference and then wait for the manager to send the
data back.

In Erlang, which uses no-wait send, one might at first expect asymmetry similarEXAMPLE 13.67
Bounded buffer in Erlang to that of Figure C 13.23: a consumer would have to receive a reply from a bounded

buffer, but a producer could simply send data. Such asymmetry would have a
hidden flaw, however: because a process does not wait after sending, the producer
could easily send more items than the buffer can hold, with the excess being
buffered in the message system. If we want the buffer to truly be bounded, we must
require the producer to wait for an acknowledgment. Code for the buffer appears
in Figure C 13.24. Because Erlang is a functional language, we use tail recursion
instead of iteration. Code for the producer and consumer looks like this:

-- producer: -- consumer:
Buffer ! {insert, X, self()}, Buffer ! {remove, self()},
receive ok -> [] end. receive X -> [] end.

The exclamation point (!), borrowed from CSP, is used to send a message.
Several languages—Erlang among them—place the parameters of an incomingEXAMPLE 13.68

Peeking at messages in
Erlang

message within the scope of the guard condition, allowing a receiver to ‘‘peek
inside’’ a message before deciding whether to receive it. In Erlang, we can say

receive
{insert, D} when D rem 2 == 1 -> % accept only odd numbers

The ability to peek implies that the content of incoming messages must be visible
to the language run-time system. An Erlang implementation must therefore be
prepared to accept (and buffer) an arbitrary number of messages; it cannot rely on
the operating system or other underlying software to provide the buffering for it.

C 286 Chapter 13 Concurrency

Moreover the fact that buffer space can never be truly unlimited means that guards
and scheduling expressions will be unable to see messages whose delivery has been
delayed by backpressure.

13.5.4 Remote Procedure Call

Any of the three principal forms of send (no-wait, synchronization, remote-
invocation) can be paired with either of the principal forms of receive (explicit
or implicit). The combination of remote-invocation send with explicit receipt
(e.g., as in Ada) is sometimes known as rendezvous. The combination of remote-
invocation send with implicit receipt is usually known as remote procedure call.
RPC is available in several concurrent languages, and is also supported on many
systems by augmenting a sequential language with a stub compiler. The stub com-
piler is independent of the language’s regular compiler. It accepts as input a formal
description of the subroutines that are to be called remotely. The description is
roughly equivalent to the subroutine headers and declarations of the types of all
parameters. Based on this input the stub compiler generates source code for client
and server stubs. A client stub for a given subroutine marshals request parameters
and an indication of the desired operation into a message buffer, sends the message
to the server, waits for a reply message, and unmarshals that message into result
parameters. A server stub takes a message buffer as parameter, unmarshals request
parameters, calls the appropriate local subroutine, marshals return parameters into
a reply message, and sends that message back to the appropriate client. Invocation
of a client stub is relatively straightforward. Invocation of server stubs is discussed
under ‘‘Implementation’’ below.

Semantics

A principal goal of most RPC systems is to make the remote nature of calls as
transparent as possible; that is, to make remote calls look as much like local calls
as possible [BN84]. In a stub compiler system, a client stub should have the same
interface as the remote procedure for which it acts as proxy; the programmer
should usually be able to call the routine without knowing or caring whether it is
local or remote.

Several issues make it difficult to achieve transparency in practice:

Parameter modes: It is difficult to implement call-by-reference parameters across
a network, since actual parameters will not be in the address space of the called
routine. (Access to global variables is similarly difficult.)

Performance: There is no escaping the fact that remote procedures may take a
long time to return. In the face of network delays, one cannot use them casually.

Failure semantics: Remote procedures are much more likely to fail than are local
procedures. It is generally acceptable in the local case to assume that a called
procedure will either run exactly once or else the entire program will fail. Such
an assumption is overly restrictive in the remote case.

13.5.4 Remote Procedure Call C 287

We can use value/result parameters in place of reference parameters so long as
program correctness does not rely on the aliasing created by reference parameters.
As noted in Section 9.3.1, Ada declares that a program is erroneous if it can tell the
difference between pass-by-reference and pass-by-value/result implementations of
in out parameters. If absolutely necessary, reference parameters and global vari-
ables can be implemented with message-passing thunks in a manner reminiscent
of call-by-name parameters (Section C 9.3.2), but only at very high cost. As noted
in Section 7.5, a few languages and systems perform deep copies of linked data
structures passed to remote routines.

Performance differences between local and remote calls can be hidden only by
artificially slowing down the local case. Such an option is clearly unacceptable.

Exactly-once failure semantics can be provided by aborting the caller in the event
of failure or, in highly reliable systems, by delaying the caller until the operating
system or language run-time system is able to rebuild the failed computation
using information previously dumped to disk. (Failure recovery techniques are
beyond the scope of this text.) An attractive alternative is to accept ‘‘at-most-once’’
semantics with notification of failure. The implementation retransmits requests
for remote invocations as necessary in an attempt to recover from lost messages. It
guarantees that retransmissions will never cause an invocation to happen more than
once, but it admits that in the presence of communication failures the invocation
may not happen at all. If the programming language provides exceptions then the
implementation can use them to make communication failures look like any other
kind of run-time error.

DESIGN & IMPLEMENTATION

13.13 Parameters to remote procedures
Ada’s comparatively high-level semantics for parameter modes allows the same
set of modes to be used for both subroutines and entries (rendezvous). An
Ada compiler will generally pass a large argument to a subroutine by reference
whenever possible, to avoid the expense of copying. If tasks are on separate
nodes of a cluster, however, the compiler will generally pass the same argument
to an entry by value-result.

A few concurrent languages provide parameter modes specifically designed
with remote invocation in mind. In Emerald [BHJL07], for example, every
parameter is a reference to an object. References to remote objects are imple-
mented transparently via message passing. To minimize the frequency of such
references, objects passed to remote procedures often migrate with the call: they
are packaged with the request message, sent to the remote site (where they can be
accessed locally), and returned to the caller in the reply. Emerald calls this call by
move. In Hermes [SBG+91] parameter passing is destructive, much like sending
on a channel in Rust (Example C 13.58). Arguments become uninitialized from
the caller’s point of view, and can therefore migrate to a remote callee without
danger of inducing remote references.

C 288 Chapter 13 Concurrency

Remote procedures

Stubs

1 2

4 5

7

3
8

6

Application
program

Library/run-
time system

OS kernel

...

...

main:
 install stubs
 start dispatcher

dispatcher
 loop
 OS_receive()

 call appropriate stub
OS_send(reply)

Figure 13.25 Implementation of a remote procedure call server. Application code initializes
the RPC system by installing stubs generated by the stub compiler (not shown). It then calls into
the run-time system to enable incoming calls. Depending on details of the particular system in
use, the dispatcher may use the thread from the main program (in which case the call to start the
dispatcher never returns), or it may create a pool of threads that handle incoming requests.

Implementation

At the level of the kernel interface, receive is usually an explicit operation. To
make receive appear implicit to the application programmer, the code produced
by an RPC stub compiler (or the run-time system of an RPC-based language)
must bridge this explicit-to-implicit gap. The typical implementation resembles
the thread-based event handling of Section 9.6.2. We describe it here in terms of
stub compilers; in a concurrent language with implicit receipt the regular compiler
does essentially the same work.

Figure C 13.25 illustrates the layers of a typical RPC system. Code above theEXAMPLE 13.69
An RPC server system upper horizontal line is written by the application programmer. Code in the middle

is a combination of library routines and code produced by the RPC stub compiler.
To initialize the RPC system, the application makes a pair of calls into the run-time
system. The first provides the system with pointers to the stub routines produced
by the stub compiler; the second starts a message dispatcher. What happens after
this second call depends on whether the server is concurrent and, if so, whether its
program threads are implemented on top of one kernel thread or several.

In the simplest case—a single-threaded server on a single kernel thread—the
dispatcher runs a loop that calls into the kernel to receive a message. When a
message arrives, the dispatcher calls the appropriate RPC stub, which unmarshals
request parameters and calls the appropriate application-level procedure. When
that procedure returns, the stub marshals return parameters into a reply message,
calls into the kernel to send the message back to the caller, and then returns to the
dispatcher.

13.5.4 Remote Procedure Call C 289

This simple organization works well so long as each remote request can be
handled quickly, without ever needing to block. If remote requests must sometimes
wait for user-level synchronization, then the server’s process must manage a ready
list of threads, as described in Section 13.2.4, but with the dispatcher integrated
into the usual thread scheduler. When the current thread blocks (in application
code), the scheduler/dispatcher will grab a new thread from the ready list. If the
ready list is empty, the scheduler/dispatcher will call into the kernel to receive a
message, fork a new user-level thread to handle it, and then continue to execute
runnable threads until the list is empty again (each thread will terminate when it
finishes handling its request).

In a multithreaded server, the call to start the dispatcher will generally ask
the kernel to fork a ‘‘pool’’ of threads to service remote requests. Each of these
threads will then perform the operations described in the previous paragraphs. In
a language or library with a one–one correspondence between program threads
and kernel threads, each will repeatedly receive a message from the kernel, call the
appropriate stub, and loop back for another request. With a more general thread
package, each kernel thread will run threads from the application’s ready list until
the list is empty, at which point it (the kernel thread) will call into the kernel for
another message. So long as the number of runnable program threads is greater
than or equal to the number of kernel threads, no new messages will be received.
When the number of runnable program threads drops below the number of kernel
threads, the extra kernel threads will call into the kernel, where they will block
until requests arrive.

3CHECK YOUR UNDERSTANDING

50. Describe three ways in which processes or threads commonly name their
communication partners.

51. What is a datagram?

52. Why, in general, might a send operation need to block?

53. What are the three principal synchronization options for the sender of a mes-
sage? What are the tradeoffs among them?

54. What are gather and scatter operations in a message-passing program? What
are marshalling and unmarshalling?

55. Describe the tradeoffs between explicit and implicit message receipt.

56. What is a remote procedure call (RPC)? What is a stub compiler?

57. What are the obstacles to transparency in an RPC system?

58. What is a rendezvous? How does it differ from a remote procedure call?

59. Explain the purpose of a select statement in Ada or Go.

C 290 Chapter 13 Concurrency

60. What semantic and pragmatic challenges are introduced by the ability to ‘‘peek’’
inside messages before they are received?

13Concurrency

13.7 Exercises

13.34 In Section 13.4.2 we cast monitors as a mechanism for synchronizing ac-
cess to shared memory, and we described their implementation in terms
of semaphores. It is also possible to think of a monitor as a module in-
habited by a single thread, which accepts request messages from other
threads, performs appropriate operations, and replies. Give the details of a
monitor implementation consistent with this conceptual model. Be sure
to include condition variables. (Hint: See the discussion of early reply in
Section 13.2.3.)

13.35 Show how shared memory can be used to implement message passing.
Specifically, choose a set of message-passing operations (e.g., no-wait send
and explicit message receipt) and show how to implement them in your
favorite shared-memory notation.

13.36 When implementing reliable messages on top of unreliable messages, a
sender can wait for an acknowledgment message, and retransmit if it doesn’t
receive it within a bounded period of time. But how does the receiver know
that its acknowledgment has been received? Why doesn’t the sender have
to acknowledge the acknowledgment (and the receiver acknowledge the
acknowledgment of the acknowledgment . . .)? (For more information on
the design of fast, reliable protocols, you might want to consult a text on
computer networks [TFW21, PD21].)

13.37 Write a channel-based bounded buffer with an explicit manager thread in
Rust, patterned after the Go version of Figure C 13.23. You will want to read
up on the select macro of the crossbeam_channel crate.

13.38 While Go allows both input (receive) and output (send) guards on its
select statements, Occam and CSP allow only input guards. The differ-
ence has to do with the fact that Go is designed for communication among
threads in a single address space, while Occam and CSP were designed for a

C 291

C 292 Chapter 13 Concurrency

distributed environment. Why should this make a difference? Suppose you
wished to add output guards to Occam. How would the implementation
work? (Hint: For ideas, see the article by Bagrodia [Bag89].)

13.39 In Section C 13.5.3 we described the semantics of a terminate arm on
an Ada select statement: this arm may be selected if and only if all po-
tential communication partners have terminated, or are likewise stuck in
select statements with terminate arms. Erlang and Occam have no
similar facility, though the original CSP proposal does. How would you im-
plement terminate arms in Ada? Why do you suppose they were left
out of Erlang and Occam? (Hint: For ideas, see the work of Apt and
Francez [Fra80, AF84].)

13Concurrency

13.8 Explorations

13.55 Find out how message passing is implemented in some locally available
concurrent language or library. Does this system provide no-wait send,
synchronization send, remote-invocation send, or some related hybrid?
If you wanted to emulate the other options using the one available, how
expensive would emulation be, in terms of low-level operations performed
by the underlying system? How would this overhead compare to what could
be achieved on the same underlying system by a language or library that
provided an optimized implementation of the other varieties of send?

13.56 Learn about Elixir, the Erlang successor due to José Valim. What are the
principle differences between the two languages? How compatible are their
implementations?

13.57 MPI provides extensive facilities for collective communication, in which there
are more than two communicating parties. Examples include multicast, in
which a message is sent simultaneously to a group of recipients; scatter,
in which elements of an array-structured message are sent, one each, to a
group of recipients; gather, in which an array-structured message is created,
at the sole recipient, from elements provided by a group of senders; all-to-
all, in which participants provide one element each of an array-structured
message that is received by all; and reduction, in which messages from a
group of senders are combined, using a commutative operator, into a result
that is received by one or all. Learn more about both the semantics and the
implementation of collective communication. What opportunities does it
provide for optimizations that are difficult to implement at the application
level?

13.58 Language designers and concurrency experts have argued for nearly 40
years over whether shared memory or message passing is a more appealing
programming model. The argument is to a large extent subjective—and

C 293

C 294 Chapter 13 Concurrency

hence not subject to definitive settlement—but it includes substantive issues
of fault containment, implementation efficiency, hardware requirements,
and algorithmic expressiveness as well. Do a literature search on ‘‘shared
memory versus message passing.’’ How many papers do you find? Read a
sampling of these and summarize their arguments. Do you find any of the
positions particularly convincing? What do you think of the decision to
include both options in Rust?

