
12Logic Languages

12.3 Theoretical Foundations

In mathematical logic, a predicate is a function that maps constants (atoms) or
variables to the values true and false. Predicate calculus provides a notation and
inference rules for constructing and reasoning about propositions (statements) com-
posed of predicate applications, operators, and the quantifiers ∀ and ∃.1 Operators
include and (∧), or (∨), not (¬), implication (→), and equivalence (↔). Quanti-
fiers are used to introduce bound variables in an appended proposition, much as λ
introduces variables in the lambda calculus. The universal quantifier, ∀, indicates
that the proposition is true for all values of the variable. The existential quantifier,
∃, indicates that the proposition is true for at least one value of the variable. HereEXAMPLE 12.39

Propositions are a few examples:

∀C[rainy(C) ∧ cold(C)→ snowy(C)]

(For all cities C, if C is rainy and C is cold, then C is snowy.)

∀A, ∀B[(∃C[takes(A, C) ∧ takes(B, C)])→ classmates(A, B)]

(For all students A and B, if there exists a class C such that A takes C and B takes C,
then A and B are classmates.)

∀N[(N > 2)→ ¬(∃A, ∃B, ∃C[AN + BN = CN ])]

(Fermat’s last theorem.)
One of the interesting characteristics of predicate calculus is that there are manyEXAMPLE 12.40

Different ways to say things ways to say the same thing. For example,

1 Strictly speaking, what we are describing here is the first-order predicate calculus. There exist
higher-order calculi in which predicates can be applied to predicates, not just to atoms and variables.
Prolog allows the user to construct higher-order predicates using call; the formalization of such
predicates is beyond the scope of our coverage here.

C 261



C 262 Chapter 12 Logic Languages

(P1 → P2) ≡ (¬P1 ∨ P2)

(¬∃X[P(X)]) ≡ (∀X[¬P(X)])

¬(P1 ∧ P2) ≡ (¬P1 ∨ ¬P2)

This flexibility of expression tends to be handy for human beings, but it can
be a nuisance for automatic theorem proving. Propositions are much easier to
manipulate algorithmically if they are placed in some sort of normal form. One
popular candidate is known as clausal form. We consider this form in the following
section.

12.3.1 Clausal Form

As it turns out, clausal form is very closely related to the structure of Prolog pro-
grams: once we have a proposition in clausal form, it will be relatively easy to
translate it into Prolog. We should note at the outset, however, that the translation
is not perfect: there are aspects of predicate calculus that Prolog cannot capture,
and there are aspects of Prolog (e.g., its imperative and database-manipulating
features) that have no analogues in predicate calculus.

Clocksin and Mellish [CM03, Chap. 10] describe a five-step procedure (based
heavily on an article by Martin Davis [Dav63]) to translate an arbitrary first-order
predicate proposition into clausal form. We trace that procedure here.

In the first step, we eliminate implication and equivalence operators. As aEXAMPLE 12.41
Conversion to clausal form concrete example, the proposition

∀A[¬student(A)→ (¬dorm_resident(A) ∧ ¬∃B[takes(A, B) ∧ class(B)])]

would become

∀A[student(A) ∨ (¬dorm_resident(A) ∧ ¬∃B[takes(A, B) ∧ class(B)])]

In the second step, we move negation inward so that the only negated items are
individual terms (predicates applied to arguments):

∀A[student(A) ∨ (¬dorm_resident(A) ∧ ∀B[¬(takes(A, B) ∧ class(B))])]
≡ ∀A[student(A) ∨ (¬dorm_resident(A) ∧ ∀B[¬takes(A, B) ∨ ¬class(B)])]

In the third step, we use a technique known as Skolemization (due to logician
Thoralf Skolem) to eliminate existential quantifiers. We will consider this technique
further in Section C 12.3.3. Our example has no existential quantifiers at this stage,
so we proceed.

In the fourth step, we move all universal quantifiers to the outside of the propo-
sition (in the absence of naming conflicts, this does not change the proposition’s
meaning). We then adopt the convention that all variables are universally quantified,
and drop the explicit quantifiers:



12.3.2 Limitations C 263

student(A) ∨ (¬dorm_resident(A) ∧ (¬takes(A, B) ∨ ¬class(B)))

Finally, in the fifth step, we use the distributive, associative, and commutative
rules of Boolean algebra to convert the proposition to conjunctive normal form, in
which the operators ∧ and ∨ are nested no more than two levels deep, with ∧ on
the outside and ∨ on the inside:

(student(A) ∨ ¬dorm_resident(A)) ∧ (student(A) ∨ ¬takes(A, B) ∨ ¬class(B))

Our proposition is now in clausal form. Specifically, it is in conjunctive normal
form, with negation only of individual terms, with no existential quantifiers, and
with implied universal quantifiers for all variables (i.e., for all names that are neither
constants nor predicates). The clauses are the items at the outer level—the things
that are and-ed together.

To translate the proposition to Prolog, we convert each logical clause to a PrologEXAMPLE 12.42
Conversion to Prolog fact or rule. Within each clause, we use commutativity to move the negated terms

to the right and the non-negated terms to the left (our example is already in this
form). We then note that we can recast the disjunctions as implications:

(student(A)← ¬(¬dorm_resident(A)))
∧ (student(A)← ¬(¬takes(A, B) ∨ ¬class(B)))

≡ (student(A)← dorm_resident(A))
∧ (student(A)← (takes(A, B) ∧ class(B)))

These are Horn clauses. The translation to Prolog is trivial:

student(A) :- dorm_resident(A).
student(A) :- takes(A, B), class(B).

12.3.2 Limitations

We claimed at the beginning of Section 12.1 that Horn clauses could be used to
capture most, though not all, of first-order predicate calculus. So what is it missing?
What can go wrong in the translation? The answer has to do with the number of
non-negated terms in each clause. If a clause has more than one, then if we attempt
to cast it as an implication there will be a disjunction on the left-hand side of the
← symbol, something that isn’t allowed in a Horn clause. Similarly, if we end up
with no non-negated terms, then the result is a headless Horn clause, something
that Prolog allows only as a query, not as an element of the database.

As an example of a disjunctive head, consider the statement ‘‘every living thingEXAMPLE 12.43
Disjunctive left-hand side is an animal or a plant.’’ In clausal form, we can capture this as

animal(X) ∨ plant(X) ∨ ¬living(X)



C 264 Chapter 12 Logic Languages

or equivalently
animal(X) ∨ plant(X)← living(X)

Because we are restricted to a single term on the left-hand side of a rule, the closest
we can come to this in Prolog is

animal(X) :- living(X), \+(plant(X)).
plant(X) :- living(X), \+(animal(X)).

But this is not the same, because Prolog’s \+ indicates inability to prove, not
falsehood.

As an example of an empty head, consider Fermat’s last theorem (Exam-EXAMPLE 12.44
Empty left-hand side ple C 12.39). Abstracting out the math, we might write

∀N[big(N)→ ¬(∃A, ∃B, ∃C[works(A, B, C , N)])]

which becomes the following in clausal form:

¬big(N) ∨ ¬works(A, B, C , N)

We can couch this as a Prolog query:

?- big(N), works(A, B, C, N).

(a query that will never terminate), but we cannot express it as a fact or a rule.
The careful reader may have noticed that facts are entered on the left-hand sideEXAMPLE 12.45

Theorem proving as a
search for contradiction

of an (implied) Prolog :- sign:

rainy(rochester).

while queries are entered on the right:

?- rainy(rochester).

The former means
rainy(rochester)← true

The latter means
false ← rainy(rochester)

If we apply resolution to these two propositions, we end up with the contradiction

false ← true

This observation suggests a mechanism for automated theorem proving: if we are
given a collection of axioms and we want to prove a theorem, we temporarily add
the negation of the theorem to the database and then attempt, through a series of
resolution operations, to obtain a contradiction.



12.3.3 Skolemization C 265

12.3.3 Skolemization

In Example C 12.41 we were able to translate a proposition from predicate calculus
into clausal form without worrying about existential quantifiers. But what about aEXAMPLE 12.46

Skolem constants statement like this one:

∃X[takes(X , cs254) ∧ class_year(X , 2)]

(There is at least one sophomore in cs254.) To get rid of the existential quantifier,
we can introduce a Skolem constant x:

takes(x , cs254), class_year(x , 2)

The mathematical justification for this change is based on something called the
axiom of choice; intuitively, we say that if there exists an X that makes the statement
true, then we can simply pick one, name it x, and proceed. (If there does not exist
an X that makes the statement true, then we can choose some arbitrary x, and
the statement will still be false.) It is worth noting that Skolem constants are not
necessarily distinct; it is quite possible, for example, for x to name the same student
as some other constant y that represents a sophomore in his201.

Sometimes we can replace an existentially quantified variable with an arbitrary
constant x. Often, however, we are constrained by some surrounding universal
quantifier. Consider the following example:EXAMPLE 12.47

Skolem functions
∀X[¬dorm_resident(X) ∨ ∃A[campus_address_of(X , A)]]

(Every dorm resident has a campus address.) To get rid of the existential quantifier,
we must choose an address for X. Since we don’t know who X is (this is a general
statement about all dorm residents), we must choose an address that depends on X:

∀X[¬dorm_resident(X) ∨ campus_address_of(X , f(X))]

Here f is a Skolem function. If we used a simple Skolem constant instead, we’d be
saying that there exists some single address shared by all dorm residents.

Whether Skolemization results in a clausal form that we can translate into
Prolog depends on whether we need to know what the constant is. If we are usingEXAMPLE 12.48

Limitations of
Skolemization

predicates takes and class_year, and we wish to assert as a fact that there is a
sophomore in cs254, we can write

takes(the_distinguished_sophomore_in_254, cs254).
class_year(the_distinguished_sophomore_in_254, 2).

Similarly, we can assert that every dorm resident has a campus address by writing

campus_address_of(X, the_dorm_address_of(X)) :- dorm_resident(X).

Now we can search for classes with sophomores in them:



C 266 Chapter 12 Logic Languages

sophomore_class(C) :- takes(X, C), class_year(X, 2).
?- sophomore_class(C).
C = cs254

and we can search for people with campus addresses:

has_campus_address(X) :- campus_address_of(X, Y).
dorm_resident(li_ying).
?- has_campus_address(X).
X = li_ying

Unfortunately, we won’t be able to identify a sophomore in cs254 by name, nor
will we be able to identify the address of li_ying.

3CHECK YOUR UNDERSTANDING

15. Define the notion of clausal form in predicate calculus.

16. Outline the procedure to convert an arbitrary predicate calculus statement into
clausal form.

17. Characterize the statements in clausal form that cannot be captured in Prolog.

18. What is Skolemization? Explain the difference between Skolem constants and
Skolem functions.

19. Under what circumstances may Skolemization fail to produce a clausal form
that can be captured usefully in Prolog?



12Logic Languages

12.6 Exercises

12.19 Restate the following Prolog rule in predicate calculus, using appropriate
quantifiers:

sibling(X, Y) :- mother(M, X), mother(M, Y),
father(F, X), father(F, Y).

12.20 Consider the following statement in predicate calculus:

empty_class(C)← ¬∃X[takes(X , C)]

(a) Translate this statement to clausal form.
(b) Can you translate the statement into Prolog? Does it make a difference

whether you’re allowed to use \+?
(c) How about the following:

takes_everything(X)← ∀C[takes(X , C)]

Can this be expressed in Prolog?

12.21 Consider the seemingly contradictory statement

¬foo(X) → foo(X)

Convert this statement to clausal form, and then translate into Prolog.
Explain what will happen if you ask

?- foo(bar).

Now consider the straightforward translation, without the intermediate
conversion to clausal form:

C 267



C 268 Chapter 12 Logic Languages

foo(X) :- \+(foo(X)).

Now explain what will happen if you ask

?- foo(bar).



12Logic Languages

12.7 Explorations

12.27 In Section C 12.3.1 we translated propositions into conjunctive normal form:
the AND of a collection of ORs. One can also translate propositions into
disjunctive normal form: the OR of a collection of ANDs. Does disjunctive
normal form have any useful properties? What other normal forms exist in
mathematical logic? What are their uses?

12.28 With all the different ways to express the same proposition in predicate
calculus, is there any useful notion of a ‘‘simplest’’ form? Is it possible,
for example, to find, among all equivalent propositions, the one with the
smallest number of symbols? How difficult is this task?

12.29 Satisfiability is the canonical NP-complete problem. Given a formula in
propositional logic (no predicates or quantifiers), it asks whether there exists
an assignment of truth values to variables that makes the overall proposition
true. Can we use Prolog to solve the satisfiability problem? If not, why not?
If so, given that it has to take exponential time, how can we hope to solve
problems full of predicates and quantifiers quickly?

12.30 Suppose we had a form of ‘‘constructive negation’’ in Prolog that allowed us
to capture information of the form ∀X[¬P(X)]. What might such a feature
look like? What would be its implications for the Prolog search strategy?
What portions of predicate calculus (if any) would still be inexpressible?

C 269


