
10Object Orientation

10.6 True Multiple Inheritance

Recall our administrative computing example in C++:EXAMPLE 10.56
Deriving from two base
classes (reprise) class student : public person, public system_user { ...

To implement multiple inheritance, we must be able to generate both a ‘‘person
view’’ and a ‘‘system_user view’’ of a student object on demand, for example
when assigning a reference to a student object into a person or system_user
variable. For one of the base classes (person, say) we can do the same thing we did
with single inheritance: let the data members of that base class lie at the beginning
of the representation of the derived class, and let the virtual methods of that base
class lie at the beginning of the vtable. Then when we assign a reference to a
student object into a person variable, code that manipulates the person variable
will just use a prefix of the data members and the vtable.

For the other base class (system_user), things get more complicated: we can’tEXAMPLE 10.57
(Nonrepeated) multiple
inheritance

put both base classes at the beginning of the derived class. One possible solution is
shown in Figure C 10.8. It is based loosely on the implementation described by Ellis
and Stroustrup [ES90, Chap. 10]. Because the system_user fields of a student
follow the person fields, the assignment of a reference to a student object into a
variable of type system_user* requires that we adjust our ‘‘view’’ by adding the
compile-time constant offset d.

The vtable for a student is broken into two parts. The first part lists the virtual
methods of the derived class and the first base class (person). The second part lists
the virtual methods of the second base class. (We have already introduced a method,
print_mailing_label, defined in class person. We may similarly imagine that
system_user defines a virtual method print_stats that is supposed to dump
account statistics to standard output.) Generalization to three or more base classes
is straightforward; see Exercise C 10.23.

Every data member of a student object has a compile-time-constant offset from
the beginning of the object. Likewise, every virtual method has a compile-time-
constant offset from the beginning of one of the parts of the vtable. The address of

C 225

C 226 Chapter 10 Object Orientation

student object
student vtable

(student/person part)

person
methods (this

corrections)student (only)
methodsperson

student

student view,
person view

person
�elds

system_user

student
(only) �elds

system_user
�elds

student vtable
(system_user part)

system_user
methods

d

system_user view

Figure 10.8 Implementation of (nonrepeated) multiple inheritance. The size d of the person portion of the object is a
compile-time constant. We access the system_user portion of the vtable by adding d to the address of a student object
before indirecting. Likewise, we create a system_user view of a student object by adding d to the object’s address. Each
vtable entry consists of both a method address and a ‘‘this correction’’ value equal to the signed distance between the view
through which the vtable was accessed and the view of the class in which the method was defined.

the person/student portion of the vtable is stored in the beginning of the object.
The address of the system_user portion of the vtable is stored at offset d. Note that
both parts of the vtable are specific to class student. In particular, the system_
user part of the vtable is not shared by objects of class system_user, because the
contents of the tables will be different if student has overridden any of system_
user’s virtual methods.

To call the virtual method print_mailing_label, originally defined in per-EXAMPLE 10.58
Method invocation with
multiple inheritance

son, we can use a code sequence similar to the one shown in Section 10.4.2 for
single inheritance. To call a virtual method originally defined in system_user, we
must first add the offset d to our object’s address, in order to find the address of
the system_user portion of the vtable. Then we can index into this system_user
vtable to find the address of the appropriate method to call. But we are left with
one final problem: what is the appropriate value of this to pass to the method?

As a concrete example, suppose that student does not override print_stats
(though it certainly could). If our object is of class student, we should pass a
system_user view of it to print_stats: the address of the object, plus d. If, how-
ever, our object is of some class (transfer_student, perhaps) that does override
print_stats, then we should pass a transfer_student view to print_stats.
If we are accessing our object through a variable (a reference or a pointer) whose
methods are dynamically bound, then we can’t tell at compile time which one

10.6 True Multiple Inheritance C 227

of these cases applies. Worse yet, we may not even know how to generate a
transfer_student view if we have to: class transfer_student may not have
been invented when this part of our code was compiled, so we certainly don’t know
how far into it the system_user fields appear!

A common solution is for each vtable entry to consist of a pair of fields. OneEXAMPLE 10.59
this correction is the address of the method’s code; the other is a ‘‘this correction’’ value, to be

added to the view through which we found the vtable. Returning to Figure C 10.8,
the ‘‘this correction’’ field of the vtable entry for print_stats would contain−d
if print_stats was overridden by student, and zero otherwise. In the system_
user part of the vtable for the (yet to be written) class transfer_student, the
‘‘this correction’’ field might contain some other value−e. In general, the ‘‘this
correction’’ is the distance between the view of the class in which the method was
declared (and through which we accessed the vtable) and the view of the class
in which the method was defined (and which will therefore be expected by the
subroutine’s implementation).

If variable my_student contains a reference to (a student view of) some object
at run time, and if print_stats is the third virtual method of system_user, then
the code to call my_student.print_stats would look something like this:

r1 := my_student –– student view of object
r1 := r1 + d –– system_user view of object
r2 := ∗r1 –– address of appropriate vtable
r3 := ∗(r2 + (3−1) × 8) –– method address
r2 := ∗(r2 + (3−1) × 8 + 4) –– this correction
r1 := r1 + r2 –– this
call ∗r3

Here we have assumed that both method addresses and this corrections are four
bytes long, that this is to be passed in r1, and that there are no other arguments.
On a typical machine this code is three instructions (including one memory access)
longer than the code required with single inheritance, and five instructions (includ-
ing three memory accesses) longer than a call to a statically identified method.

DESIGN & IMPLEMENTATION

10.9 The cost of multiple inheritance
The implementation we have described for multiple inheritance, using this
corrections in vtables, has the unfortunate property of increasing the overhead
of all virtual method invocations, even in programs that do not make use of
multiple inheritance. This sort of mandatory overhead is something that lan-
guage designers (and the designers of systems languages in particular) generally
try to avoid; as a matter of principle, complex special cases should not reduce
the efficiency of the simpler common case. Fortunately, there are other imple-
mentations of multiple inheritance (see Exercise C 10.28) in which the cost of
modifying this is paid only when the correction is nonzero.

C 228 Chapter 10 Object Orientation

10.6.1 Semantic Ambiguities

In addition to implementation complexities (only some of which we have discussed
so far), multiple inheritance introduces potential semantic problems. SupposeEXAMPLE 10.60

Methods found in more
than one base class

that both system_user and person define a print_stats method. If we have
a variable s of type student* and we call s->print_stats, which version of
the method should we get? In CLOS and Python, we get the version from the
base class that appeared first in the derived class’s header. In Eiffel, we get a static
semantic error if we try to define a derived class with such an ambiguity. In C++,
we can define the derived class, but we get a static semantic error if we attempt to
use a member whose name is ambiguous. To resolve the ambiguity, we can use
the feature renaming mechanism in Eiffel to give different names to the inherited
methods. In C++ we must redefine the conflicting method explicitly:

void student::print_stats() {
person::print_stats();
system_user::print_stats();

}

Here we have chosen to call the print_stats routines of both base classes, using
the :: scope resolution operator to name them. We could of course have chosen
to call just one, or to write our own code from scratch. We could even arrange for
access to both routines by giving them new names:

void student::print_person_stats() {
person::print_stats();

}
void student::print_user_stats() {

system_user::print_stats();
}

Things are a little messier if either or both of the identically named base classEXAMPLE 10.61
Overriding an ambiguous
method

methods are virtual, and we want to override them in the derived class. Follow-
ing Stroustrup [Str13, Sec. 21.3.3], we can solve the problem by interposing an
intermediate class between each base class and the derived class:

class person_interface : public person {
public:

virtual void print_person_stats() = 0;
void print_stats() { print_person_stats(); }

// overrides person::print_stats
};
class system_user_interface : public system_user {
public:

virtual void print_user_stats() = 0;
void print_stats() { print_user_stats(); }

// overrides system_user::print_stats
};

10.6.1 Semantic Ambiguities C 229

class student : public person_interface, public system_user_interface {
public:

void print_person_stats() { ...
void print_user_stats() { ...
...

};

We leave it as an exercise (C 10.24) to show what happens if we assign a student
object into a variable p of type person* and then call p->print_stats().

A more serious ambiguity arises when a class D inherits from two base classes,
B and C, both of which inherit from some common base class A. In this situation,
should an object of class D contain one instance of the data members of class A or
two? The answer would seem to be program dependent. For example, suppose thatEXAMPLE 10.62

Repeated multiple
inheritance

professors, like students, are all given accounts in our administrative computing
system. Then, like class student, we might want class professor to inherit from
both person and system_user:

class professor : public person, public system_user { ...

But now suppose that some professors take courses on occasion as nonmatricu-
lated students. In this case we might want a new class that supports both sets of
operations:

class student_prof : public student, public professor { ...

Class student_prof inherits from person and from system_user twice, once
each through student and professor. If we think about it, we probably want a
student_prof to have one instance of the data members of class person—one
name, one university ID number, one mailing address—and two instances of the
data members of class system_user—separate user accounts (with separate user
ids, disk quotas, etc.) for the student and professor roles:

person system_usersystem_user

professorstudent

student_prof

The system_user case—separate copies from each branch of the inheritance
tree—is known as replicated inheritance. The person case—a single copy from both
branches of the tree—is known as shared inheritance. Both are forms of repeated
inheritance.

Replicated inheritance is the default in C++. Shared inheritance is the default in
Eiffel. Shared inheritance can be obtained in C++ by specifying that a base class isEXAMPLE 10.63

Shared inheritance in C++ virtual:

C 230 Chapter 10 Object Orientation

class student : public virtual person, public system_user { ...
class professor : public virtual person, public system_user { ...

In this case the members of class person are shared when inherited over multiple
paths, while the members of class system_user are replicated.

Replicated inheritance of individual features can be obtained in Eiffel by meansEXAMPLE 10.64
Replicated inheritance in
Eiffel

of renaming:

class student inherit person; system_user ...
class professor inherit person; system_user ...

class student_prof
inherit

student
rename

user_id as student_user_id,
disk_quota as student_disk_quota

end;
professor

rename
user_id as prof_user_id,
disk_quota as prof_disk_quota

end
feature

...
end -- class student_prof

Features inherited with different final names are replicated; features inherited with
the same final name are shared. Multiple inheritance in CLOS is always shared,
unless the user interposes interface classes as shown in Example C 10.61 explicitly;
there is no other renaming mechanism.

10.6.2 Replicated Inheritance

Replicated inheritance introduces no serious implementation problems beyond
those of nonrepeated multiple inheritance. As shown in Figure C 10.9, an objectEXAMPLE 10.65

Using replicated inheritance (in this case of class D) that inherits a base class (A) over two different paths in the
inheritance tree has two copies of A’s data members in its representation, and a set
of entries for the virtual methods of A in each of the parts of its vtable. Creation
of a B view of a D object (e.g., when assigning a pointer to a D object into a B*
variable) would not require the execution of any code. Creation of a C view (e.g.,
when assigning into a C* variable) would require the addition of offset d.

Because of ambiguity, we cannot access A members of a D object by name. We
can access them, however, if we assign a pointer to a D object into a B* or C*
variable. Similarly, a pointer to a D object cannot be assigned into an A pointer
directly: there would be no basis on which to choose the A for which to create a
view. We can, however, perform the assignment through a B* or C* intermediary:

10.6.3 Shared Inheritance C 231

D view, B view, B::A view

C view, C::A view
D

B C

AA

d

D object D vtable (D/B part)

D vtable (C part)

B::A �elds
B::A

methods

C::A
methodsC::A �elds

B (only)
�elds

B (only)
methods
D (only)
methods

C (only)
methodsC (only)

�elds

D (only)
�elds

Figure 10.9 Implementation of replicated multiple inheritance. Each base class contains a
complete copy of class A. As in Figure C 10.8, the vtable for class D is split into two parts, one for
each base class, and each vtable entry consists of a ⟨method address, this correction⟩ pair.

class A { ...
class B : public A { ...
class C : public A { ...
class D : public B, public C { ...
...
A* a; B* b; C* c; D* d;
a = d; // error; ambiguous
b = d; // ok
c = d; // ok
a = b; // ok; a := d's B's A
a = c; // ok; a := d's C's A

As described in Example C 10.59, vtable entries will need to consist of ⟨method
address, this correction⟩ pairs.

10.6.3 Shared Inheritance

Shared inheritance introduces a new opportunity for ambiguity and additional
implementation complexity. As in the previous subsection, assume that D inheritsEXAMPLE 10.66

Overriding methods with
shared inheritance

from B and C, both of which inherit from A. This time, however, assume that A is
shared:

C 232 Chapter 10 Object Orientation

D view, B view
D object

B methods

D methods

C methods

A methods

B (only)
�elds

C (only)
�elds

D (only)
�elds

A �elds

D vtable (D/B part)

D vtable (C part)

D vtable (A part)

C view

A view

D

C

A

B

Figure 10.10 Implementation of shared multiple inheritance. Objects of class B, C, and
D contain the address of their A components at a compile-time constant offset (in this case,
immediately after the vtable address). As in Figures C 10.8 and C 10.9, this corrections for
virtual methods in vtable entries are relative to the view of the class in which the method was
declared (i.e., through which the vtable was accessed).

class A {
public:

virtual void f();
...

};
class B : public virtual A { ...
class C : public virtual A { ...
class D : public B, public C { ...

The new ambiguity arises if B or C overrides method f, declared in A: which
version (if any) does D inherit? C++ defines a reference to f to be unambiguous
(and therefore valid) if one of the possible definitions dominates the others, in the
sense that its class is a descendant of the classes of all the other definitions. In our
specific example, D can inherit an overridden version of f from either B or C. If
both of them override it, however, any attempt to use f from within D’s code will
be a static semantic error. Eiffel provides comparatively elaborate mechanisms for
controlling ambiguity. A class that inherits an overridden method over more than
one path can specify the version it wants. Alternatively, through renaming, it can
retain access to all versions.

To implement shared inheritance we must recognize that because a single in-EXAMPLE 10.67
Implementation of shared
inheritance

stance of A is a part of both B and C, we cannot make the representations of both B
and C contiguous in memory. In Figure C 10.10, in fact, we have chosen to make

10.6.3 Shared Inheritance C 233

neither B nor C contiguous. We insist, however, that the representation of every B,
C, or D object (and every B, C, or D view of an object of a derived class) contain
the address of the A part of the object at a compile-time constant offset from the
beginning of the view. To access a data member of A, we first indirect through this
address, and then apply the offset of the member within A. To call the nth virtual
method declared in A, we execute the following code:

r1 := my_D_view –– original view of object
r1 := ∗(r1 + 4) –– A view
r2 := ∗r1 –– address of A part of vtable
r3 := ∗(r2 + (n−1) × 8) –– method address
r2 := ∗(r2 + (n−1) × 8 + 4) –– this correction
r1 := r1 + r2 –– this
call ∗r3

This code sequence is the same number of instructions in length as our sequence for
nonvirtual base classes (Example C 10.59), but involves one more memory access
(to indirect through the A address). The code will work with any D view of any
object, including an object of a class derived from D, in which the D and A views
might be more widely separated. The constant 4 in the second line assumes 4-byte
addresses, with the address of D’s A part located immediately after D’s initial vtable
address. In an object with more than one virtual base class, the address of the part
of the object corresponding to each such base would be found at a different offset
from the beginning of the object.

The implementation strategy of Figure C 10.10 works in C++ because we always
know when a base class is virtual (shared). For data members and virtual methods
of nonvirtual base classes, we continue to use the (cheaper) lookup algorithms of
Figures C 10.8 and C 10.9. In Eiffel, on the other hand, a feature that is inherited
via replication at one level of the class hierarchy may be inherited via sharing later
on. As a result, Eiffel requires a somewhat more elaborate implementation strategy
(see Exercise C 10.29).

We can avoid the extra level of indirection when accessing virtual methods of
virtual base classes in C++ if we are willing to replicate portions of a class’s vtable.
We explore this option in Exercise C 10.30.

3CHECK YOUR UNDERSTANDING

45. Give a few examples of the semantic ambiguities that arise when a class has
more than one base class.

46. Explain the distinction between replicated and shared multiple inheritance.
When is each desirable?

47. Explain how even nonrepeated multiple inheritance introduces the need for
‘‘this correction’’ fields in individual vtable entries.

48. Explain how shared multiple inheritance introduces the need for an additional
level of indirection when accessing fields of certain parent classes.

C 234 Chapter 10 Object Orientation

49. Explain why true multiple inheritance is harder to implement than interface
inheritance, traits, or mix-ins.

10Object Orientation

10.7.1 The Object Model of Smalltalk

Smalltalk is heavily integrated into its programming environment. In fact, unlike all
of the other languages mentioned in this book, a Smalltalk program does not consist
of a simple sequence of characters. Rather, Smalltalk programs are meant to be
viewed within the browser of a Smalltalk implementation, where font changes and
screen position can be used to differentiate among various parts of a given program
unit. Together with the contemporaneous Interlisp and Pilot/Mesa projects at PARC,
the Smalltalk group shares credit for developing the now ubiquitous concepts of
bit-mapped screens, windows, menus, and mice.

Smalltalk uses an untyped reference model for all variables. Every variable refers
to an object, but the class of the object need not be statically known. As described
in Section 10.3.1, every Smalltalk object is an instance of a class descended from a
single base class named Object. All data are contained in objects. The most trivial
of these are simple immutable objects such as true (of class Boolean) and 3 (of
class Integer).

Operations are all conceptualized as messages sent to objects. The expressionEXAMPLE 10.68
Operations as messages in
Smalltalk

3 + 4, for example, indicates sending a + message to the (immutable) object 3,
with a reference to the object 4 as argument. In response to this message, the
object 3 creates and returns a reference to the (immutable) object 7. Similarly, the
expression a + b, where a and b are variables, indicates sending a + message to
the object referred to by a, with the reference in b as argument. If a happens to
refer to 3 and b refers to 4, the effect will be the same as it was in the case of the
constants.

As described in Section 6.1, multiargument messages have multiword (‘‘mixfix’’)EXAMPLE 10.69
Mixfix messages names. Each word ends with a colon; each argument follows a word. The expression

myBox displayOn: myScreen at: location

sends a displayOn: at: message to the object referred to by variable myBox, with
the objects referred to by myScreen and location as arguments.

C 235

C 236 Chapter 10 Object Orientation

Even control flow in Smalltalk is conceptualized as messages. Consider theEXAMPLE 10.70
Selection as an ifTrue:
ifFalse: message

selection construct:

n < 0
ifTrue: [abs <- n negated]
ifFalse: [abs <- n]

This code begins by sending a < 0 message (a < message with 0 as argument) to
the object referred to by n. In response to this message, the object referred to by
n will return a reference to one of two immutable objects: true or false. This
reference becomes the value of the n < 0 expression.

Smalltalk evaluates expressions left-to-right without precedence or associativ-
ity. The value of n < 0 therefore becomes the recipient of an ifTrue: ifFalse:
message. This message has two arguments, each of which is a block. A block in
Smalltalk is a fragment of code enclosed in brackets. It is an immutable object,
with semantics roughly comparable to those of a lambda expression in Lisp. To
execute a block we send it a value message.

When sent an ifTrue: ifFalse: message, the immutable object true sends a
value message to its first argument (which had better be a block) and then returns
the result. The object false, on the other hand, in response to the same message,
sends a value message to its second argument (the block that followed ifFalse:).
The left arrow (<-) in each block is the assignment operator. Assignment is not a
message; it is a side effect of evaluation of the right-hand side. As in expression-
based languages such as Algol 68, the value of an assignment expression is the value
of the right-hand side. The overall value of our selection expression will be the value
of one of the blocks, namely a reference to n or to its additive inverse, whichever
is non-negative. For the sake of convenience, Boolean objects in Smalltalk also
implement ifTrue:, ifFalse:, and ifFalse: ifTrue: methods.

Iteration is modeled in a similar fashion. For enumeration-controlled loops,EXAMPLE 10.71
Iterating with messages class Integer implements timesRepeat: and to: by: do: methods:

pow <- 1.
10 timesRepeat:

[pow <- pow * n]

sum <- 0.
1 to: 100 by: 2 do:

[:i | sum <- sum + (a at: i)]

The first of these code fragments calculates n10. In response to a timesRepeat:
message, the integer k sends a value message to the argument (a block) k times.
The second code fragment sums the odd-indexed elements of the array referred
to by a. In response to a to: by: do: message, the integer k behaves as one might
expect: it sends a value: message to its third argument (a block) ⌊(t − k + b)/b⌋
times, where t is the first argument and b is the second argument. Note the colon at
the end of value:. The plain value message is unary; the value: message has an

10.7.1 The Object Model of Smalltalk C 237

argument; it is understood by blocks that have a (single) formal parameter. In our
loop example, the integer 1 sends the messages value: 1, value: 3, value: 5, and
so on to the block [:i | sum <- sum + (a at: i)]. The :i | at the beginning of
the block is its formal parameter. The at: message is understood by arrays. For
iteration with a step size of one, integers also provide a to: do: method.

Because it is an object, a block can be referred to by a variable:EXAMPLE 10.72
Blocks as closures

b <- [n <- n + 1]. " b is now a closure"
c <- [:i | n <- n + i]. " so is c"
...
b value. " increment n by 1"
c value: 3. " increment n by 3"

A block with two parameters expects a value: value: message. A block with j
parameters expects a message whose name consists of the word value: repeated j
times. Comments in Smalltalk are double-quoted (strings are single-quoted).

For logically controlled loops, Smalltalk relies on the whileTrue: message,EXAMPLE 10.73
Logical looping with
messages

understood by blocks:

tail <- myList.
[tail next ~~ nil]

whileTrue: [tail <- tail next]

This code sets tail to the final element of myList. The double-tilde (~~) operator
means ‘‘does not refer to the same object as.’’ The method next is assumed to return
a reference to the element following its recipient. In response to a whileTrue:
message, a block sends itself a value message. If the result of that message is a
reference to true, the block sends a value message to the argument of the original
message and repeats. Blocks also implement a whileFalse: method.

The blocks of Smalltalk allow the programmer to construct almost arbitrary
control-flow constructs. Because of their simple syntax, Smalltalk blocks are even
easier to manipulate than the lambda expressions of Lisp. In effect, a to: by: do:
message turns iteration ‘‘inside out,’’ making the body of the loop a simple message
argument that can be executed (by sending it a value message) from within the
body of the to: by: do: method. Smalltalk programmers can define similar meth-EXAMPLE 10.74

Defining control
abstractions

ods for other container classes, obtaining all the power of iterators (Section 6.5.3)
and much of the power of call_with_current_continuation (Section 9.4.3):

myTree inorderDo: [:node | whatever]

It is worth noting that the uniform object model of computation in Smalltalk
does not necessarily imply a uniform implementation. Just as Clu implemen-
tations implement built-in immutable objects as values, despite their reference
semantics (Section 6.1.2), a Smalltalk implementation is likely to use the usual
machine instructions for computer arithmetic, rather than actually sending mes-
sages to integers. In a similar vein, the most common control-flow constructs

C 238 Chapter 10 Object Orientation

(ifTrue: ifFalse:, to: by: do:, whileTrue:, etc.) are likely to be recognized
by a Smalltalk interpreter, and implemented with special, faster code.

We end this subsection by observing that recursion works at least as well in
Smalltalk as it does in other imperative languages. The following is a recursiveEXAMPLE 10.75

Recursion in Smalltalk implementation of Euclid’s algorithm:

gcd: other "other is a formal parameter"
(self = other)

ifTrue: [↑ self]. "end condition"
(self < other)

ifTrue: [↑ self gcd: (other - self)] "recurse"
ifFalse: [↑ other gcd: (self - other)] "recurse"

The up-arrow (↑) symbol is comparable to the return of C or Algol 68. The
keyword self is comparable to this in C++. We have shown the code in mixed
fonts, much as it would appear in a Smalltalk browser. The header of the method is
identified by bold face type.

3CHECK YOUR UNDERSTANDING

50. Name the three projects at Xerox PARC in the 1970s that pioneered modern
GUI-based personal computers.

51. Explain the concept of a message in Smalltalk.

52. How does Smalltalk indicate multiple message arguments?

53. What is a block in Smalltalk? What mechanism does it resemble in Lisp?

54. Give three examples of how Smalltalk models control flow as message evalua-
tion.

55. Explain how type checking works in Smalltalk.

10Object Orientation

10.9 Exercises

10.23 Suppose that class D inherits from classes A, B, and C, none of which share
any common ancestor. Show how the data members and vtable(s) of D
might be laid out in memory. Also show how to convert a reference to a D
object into a reference to an A, B, or C object.

10.24 Consider the person_interface and system_user_interface classes
described in Example C 10.61. If student is derived from person_
interface and system_user_interface, explain what happens in the
following method call:

student s;
person *p = &s;
...
p->print_stats();

You may wish to use a diagram of the representation of a student object to
illustrate the method lookups that occur and the views that are computed.
You may assume an implementation akin to that of Figure C 10.9, without
shared inheritance.

10.25 Given the inheritance tree of Example C 10.62, show a representation for
objects of class student_prof. You may want to consult Figures C 10.8,
C 10.9, and C 10.10.

10.26 Given the memory layout of Figure C 10.8 and the following declarations:

student& sr;
system_user& ur;

show the code that must be generated for the assignment

C 239

C 240 Chapter 10 Object Orientation

ur = sr;

(Pitfall: Be sure to consider null pointers.)
10.27 Standard C++ provides a ‘‘pointer-to-member’’ mechanism for classes:

class C {
public:

int a;
int b;

} c;
int C::*pm = &C::a;

// pm points to member a of an (arbitrary) C object
...
C* p = &c;
p->*pm = 3; // assign 3 into c.a

Pointers to members are also permitted for subroutine members (methods),
including virtual methods. How would you implement pointers to virtual
methods in the presence of C++-style multiple inheritance?

10.28 As an alternative to using ⟨method address, this correction⟩ pairs in the
vtable entries of a language with multiple inheritance, we could leave the
entries as simple pointers, but make them point to code that updates this
in-line, and then jumps to the beginning of the appropriate method. Show
the sequence of instructions executed under this scheme. What factors
will influence whether it runs faster or slower than the sequence shown in
Example C 10.59? Which scheme will use less space? (Remember to count
both code and data structure size, and consider which instructions must be
replicated at every call site.)

Pursuing the replacement of data structures with executable code even
further, consider an implementation in which the vtable itself consists of
executable code. Show what this code would look like and, again, discuss
the implications for time and space overhead.

10.29 In Eiffel, shared inheritance is the default rather than the exception. Only
renamed features are replicated. As a result, it is not possible to tell when
looking at a class whether its members will be inherited replicated or shared
by derived classes. Describe a uniform mechanism for looking up members
inherited from base classes that will work whether they are replicated or
shared. (Hint: Consider the use of dope vectors for records containing
arrays of dynamic shape, as described in Section 8.2.2. For further details,
consult the compiler text of Wilhelm and Maurer [WM95, Sec. 5.3].)

10.30 In Figure C 10.10, consider calls to virtual methods declared in A, but called
through a B, C, or D object view. We could avoid one level of indirection by
appending a copy of the A part of the vtable to the D/B and C parts of the
vtable (with suitably adjusted this corrections). Give calling sequences for
this alternative implementation. In the worst case, how much larger may
the vtable be for a class with n ancestors?

10.9 Exercises C 241

10.31 Consider the Smalltalk implementation of Euclid’s algorithm, presented
at the end of Section C 10.7.1. Trace the messages involved in evaluating
4 gcd: 6.

10Object Orientation

10.10 Explorations

10.39 Figure out how multiple inheritance is implemented in your local C++
compiler. How closely does it follow the strategy of Sections C 10.6.2 and
C 10.6.3? What rationale do you see for any differences?

10.40 Learn how multiple inheritance is implemented in Perl and Python (you
might begin by reading Section 14.4.4). Describe the differences with respect
to Sections C 10.6.2 and C 10.6.3. Discuss the advantages and drawbacks of
dynamic typing in object-oriented languages.

C 243

