
9Subroutines and Control Abstraction

9.2.1 Displays

As noted in the main text, a display is an embedding of the static chain into anEXAMPLE 9.67
Nonlocal access using a
display

array. The jth element of the display contains a reference to the frame of the most
recently active subroutine at lexical nesting level j. The first element of the display
is thus a reference to the frame of some subroutine S nested directly inside the main
program; the second element is a reference to the frame of a routine that is nested
inside of S, and so forth, until we reach the currently active routine. Figure C 9.7
contains an example.

If the display is stored in memory, then a nonlocal object can be loaded into a
register with two memory accesses: one to load the display element into a register,
the second to load the object. On a machine with a large number of registers, one
might be tempted to reduce the overhead to only one memory access by keeping the
entire display in registers, but that would probably be a bad idea: display elements
tend to be accessed much less frequently than other things (e.g., local variables)
that might be kept in the registers instead.

Maintaining the Display

Maintenance of a display is slightly more complicated than maintenance of a static
chain, but not by much. Perhaps the most obvious approach would be to maintain
the static chain as usual, and simply fill the display at procedure entry and exit,
by walking down the chain. In most cases, however, the following (much faster)
scheme suffices: when calling a subroutine at lexical nesting level j, the callee saves
the current value of the jth display element into the stack, and then replaces that
element with a copy of its own (newly created) frame pointer. Before returning, it
restores the old element. Why does this mechanism work? As with static chains,
there are two cases to consider:

1. The callee is nested (directly) inside the caller. In this case the caller and the
callee share all display elements up to the current level. Putting the callee’s
frame pointer into the display simply extends the current level by one. It is
conceivable that the old value needn’t be saved, but in general there is no way

C 191



C 192 Chapter 9 Subroutines and Control Abstraction

A

E

A

E

B

A

E

B

D

A

E

B

D

E

Figure 9.7 Nonlocal access using a display. The stack configurations, from left to right, illustrate
the contents of the display (at bottom) for a sequence of subroutine calls, assuming the lexical
nesting of Figure 9.1. Display elements beyond that of the currently executing subroutine are not
used.

to tell. The caller itself might have been called by code that is very deeply nested,
and that is counting on the integrity of a very deep display, in which case the
old display element will be needed. A smart compiler may be able to avoid the
save in certain circumstances.

2. The callee is at lexical nesting level j, k ≥ 0 levels out from the caller. In this
case the caller and callee share all display elements up through j−1. The caller’s

DESIGN & IMPLEMENTATION

9.9 Lexical nesting and displays
Because the display is a fixed-size array, compilers that use a display to implement
access to nonlocal objects generally impose a limit (the size of the display) on
the maximum depth to which subroutines may be nested. If this limit is larger
than, say, five or six, it is unlikely that any programmer will ever wish for more.
Note that the display does not eliminate the need for a frame pointer. Because
local variables are accessed so often, it is important to have the address of
the current frame in a register, where it can be used for displacement-mode
addressing. Similarly, on a RISC processor, where a 32-bit address will not
fit in one instruction, it is important to maintain a base register for the most
commonly accessed global variables as well.



9.2.1 Displays C 193

entry at level j is different from the callee’s, so the callee must save it before
storing its own frame pointer. If the callee in turn calls a routine at level j + 1,
that routine will change another element of the display, but all old elements will
be restored before they are needed again.

If the callee is a leaf routine then the display can be left intact; no one will use the
element corresponding to the callee’s nesting level before control returns to the
caller.

Closures

A subroutine that is passed as a parameter, stored in a variable, or returned from a
function must be called through some sort of closure (Section 3.6) that captures the
referencing environment. In a language implementation based on static chains, a
closure can be represented as a ⟨code address, static link⟩ pair. Displays are not as
simple. A standard technique is to create two ‘‘entry points’’—starting addresses—
for every subroutine. One of these is for ‘‘normal’’ calls, the other for calls through
closures. When a closure is created, it contains the address of the alternative entry
point. The code at that entry point saves elements 1 through j of the display into
the stack (it will have to create a larger-than-normal stack frame in order to do
this), and then replaces those elements with values taken from (or calculated from)
the closure. The alternative entry then makes a nested call to the main body of the
subroutine (it skips the code immediately following the normal entry—the code
that creates the normal stack frame and updates the display). When the subroutine
returns, it comes back to the code of the alternative entry, which restores the old
value of the display before returning to the actual caller.

More space-conserving implementations of display-based closures are possible
(see Exercise C 9.29), but with higher run-time overhead.

Comparison to Static Chains

In general, maintaining a display is slightly more expensive than maintaining a
static chain, though the comparison is not absolute. In the usual case, passing a
static link to a called routine requires k ≥ 0 load instructions in the caller, followed
by one store instruction in the callee (to place the static link at the appropriate
offset in the stack frame). The store may be skipped in leaf routines, assuming
that a register is available to hold the link as long as it is needed. No overhead is
required to maintain the static chain when returning from a subroutine. With a
display, a nonleaf callee requires two loads and three stores (1 + 2 in the prologue
and 1 + 1 epilogue) to save and restore display elements. Because the callee does
all the work, displays may save a little bit on code size, compared to static chains.
As noted above, displays significantly complicate the creation and use of closures.

The original advantage of displays—reduced cost for access to objects in outer
scopes—seems less clear today than once it did. In fact, while displays were popular
in the CISC compilers of the 1970s and 1980s, they are less common in recent
compilers. Most programs don’t nest subroutines more than two or three levels
deep, so static chains are seldom very long, and variables in surrounding scopes tend



C 194 Chapter 9 Subroutines and Control Abstraction

not to be accessed very often. If they are accessed often, common subexpression
optimizations (to be discussed in Chapter 17) are likely to ensure that a pointer to
the appropriate frame remains in a register.

Some language designers have argued that the development of object-oriented
programming (the subject of Chapter 10) has eliminated the need for nested subrou-
tines [Han81]. Others might even say that the success of C has shown such routines
to be unneeded. Without nested subroutines, of course, the choice between static
chains and displays is moot.

3CHECK YOUR UNDERSTANDING

46. Describe how we access an object at lexical nesting level k in a language imple-
mentation based on displays.

47. Why isn’t the display typically kept in registers?

48. Explain how to maintain the display during subroutine calls.

49. What special concerns arise when creating closures in a language implementa-
tion that uses displays?

50. Summarize the tradeoffs between displays and static chains. Describe a program
for which displays will result in faster code. Describe another for which static
chains will be faster.



9Subroutines and Control Abstraction

9.2.2 Stack Case Studies: LLVM on Arm; gcc on x86

To make stack management a bit more concrete, we present a pair of case studies:
Apple’s LLVM-based C compiler for the iPhone (Arm) and the GNU compiler
suite for 32- and 64-bit x86. Both examples follow the general scheme outlined in
Section 3.2.2, with differences in details that reflect the history of the respective
compilers and the architecture of the target machines.

LLVM on Arm

An overview of the Arm instruction set architecture (ISA) can be found in Sec-
tion C 5.4.5. For the sake of interoperability, Arm Ltd. publishes a standard for
subroutine calling sequences that allows code from different vendors and compilers
to link and run together. The standard has several variants, reflecting hardware
features (Thumb mode, floating-point or vector instructions and registers, dynamic
linking) that may or may not be present on a given processor or in its software
environment. We focus here on the conventions adopted by Apple’s C compiler for
the iPhone and iPad (version 4.2), at optimization level -O2. The Apple compiler
uses the 32-bit Arm back end (version 3.2svn) of the LLVM compiler suite. Given
the level of detail in Arm’s standard, code produced by other compilers is likely
to be quite similar. Note, however, that the conventions for 64-bit code are very
different; they are not documented here.

As noted in Section C 5.4.5, register r14 (also known as lr) is special-cased
by the ISA to receive the return address in subroutine call (bl—branch-and-link)
instructions. Register r13 (also known as sp) is similarly reserved for use as the
stack pointer. It is not modified by bl instructions, but several variants of push and
pop, which do update sp, are commonly part of the subroutine calling sequence.
Some compilers for Arm, though not all, dedicate a third register by convention
for use as a frame pointer; LLVM uses r7 for this purpose.

A typical LLVM/Arm stack frame appears in Figure C 9.8. The sp register pointsEXAMPLE 9.68
LLVM/Arm stack layout to the last used location in the stack (note that some compilers aim the pointer at

C 195



C 196 Chapter 9 Subroutines and Control Abstraction

4 bytes/32 bits

Local variables
and

temporaries

Arguments

Saved registers
(including fp)

sp

Direction of stack growth
(lower addresses)

r7 (fp)

5

Current frame

Previous (calling)
frame

n

Space to build
argument lists

Figure 9.8 Layout of the subroutine call stack for Apple’s LLVM-based C compiler for Arm,
running in 32-bit mode. As in Figure 9.2, lower addresses are toward the top of the page.

the first unused location). Arm’s subroutine calling standard requires that the stack
always be word-aligned (sp mod 4 = 0). At an external call (to a subroutine in a
different compilation unit) it must be double-word aligned (sp mod 8 = 0).

The first four arguments to a subroutine are always passed in registers. Additional
arguments may be passed on the stack, with the last argument in the deepest
location. Space for stack-based arguments is considered a part of the calling routine.
If the current routine is not a leaf, space for any stack-based arguments it needs to
pass to additional routines is preallocated, at the top (lowest-addressed-end) of the
frame, as part of the subroutine prologue.

Space for local variables and for any temporary values that will not fit in registers
is allocated in the middle of the frame. If the subroutine ever applies an address-of
operator (& in C) to a low-numbered argument (one that will have been passed
in a register), or if it passes such an argument to another routine by reference, the
compiler creates a local variable to hold the argument, and initializes it with the
value passed in the register.

Any callee-saves registers that may be overwritten by the current routine are
saved at the bottom of the frame, directly beyond any stack-based arguments. The
frame pointer (r7) is typically among these. LLVM arranges for the current fp to
point to the location of the saved fp.

Argument Passing Conventions Arguments and locals of the current subroutine
are accessed via offsets from the fp. Arguments in the process of being passed
to the next routine are assembled at the top of the frame, and are accessed via
offsets from the sp. The first four arguments are passed in registers r0–r3. A
double-precision floating-point number is divided into two 32-bit halves, and
passed as if it were two integers. (Some other Arm compilers pass floating-point



9.2.2 Stack Case Studies: LLVM on Arm; gcc on x86 C 197

arguments in the floating-point registers.) Records (structs) that appear early
in the argument list may also be split into 32-bit pieces, and passed in multiple
registers. An argument may be split between registers and the stack, if part but not
all of it will fit in registers.

The argument build area at the top of the frame is designed to be large enough
to hold the largest argument list that may be passed to any called routine. This
convention may waste a bit of space in certain cases, but it ensures that arguments
never need to be ‘‘pushed’’ in the usual sense of the word: the sp does not change
when they are placed into the stack.

Return values up to 4 bytes in length occupy register r0. Double-word scalar
return values occupy register pair r0–r1; quad-word scalar return values occupy
registers r0–r3. Record-type return values of more than four bytes are placed in
memory, at a location chosen by the caller and passed as an extra, hidden argument.
If the return value is to be assigned immediately into a variable (e.g., x = foo()),
the caller can simply pass the address of the variable. If the value is to be passed in
turn to another subroutine, the caller can pass the appropriate address within its
own argument build area. (Writing the return value into this space will probably
destroy the returning function’s own arguments, but that’s fine in the absence of
call-by-value/result: at this point the arguments are no longer needed.) Finally,
though one doesn’t see this idiom often (and most languages don’t support it), C
allows the caller to extract a field directly from the return value of a function (e.g.,
x = foo().a + y;); in this case the caller must pass the address of a temporary
location within the ‘‘local variables and temporaries’’ part of its stack frame.

DESIGN & IMPLEMENTATION

9.10 Leveraging pc = r15
Because Arm assigns a register number to the program counter, that counter
can be read and written (almost) like any other register. Writes to the pc cause
a branch in control. This convention, together with the choice of lr = r14 and
pc = r15, enables an interesting optimization. If a subroutine is not a leaf (i.e., it
calls another routine), lr will be among the registers saved at the bottom of the
frame. If we suppose, for concreteness, that the subroutine plans to overwrite
callee-saves registers r4 and r5, and we know that we need to update the frame
pointer (r7), then the subroutine prologue is likely to contain a push {r4, r5,
r7, lr} instruction. This instruction stores the registers in sorted order, with
the highest-numbered register (in this case, lr) at the highest address—deepest
in the stack. One might naturally expect the epilogue to contain a symmetric
pop {r4, r5, r7, lr} instruction, followed immediately by bx lr (branch
to location in lr). But since the pc and lr have adjacent register numbers, the
compiler can—and typically does—achieve the same result with a single pop
{r4, r5, r7, pc} instruction.



C 198 Chapter 9 Subroutines and Control Abstraction

Arm and Thumb Mode Switching One of the more unusual features of the 32-bit
Arm ISA (as described in Section C 5.4.5) is the presence of two separate instruction
encodings. As on most RISC machines, the A32 encoding represents each instruc-
tion with 32 bits. The alternative T32 encoding, also known as ‘‘Thumb,’’ represents
the most common instructions in only 16 bits; the resulting improvement in code
density can be important in embedded applications. While the two encodings are
quite different (and in particular, T32 is not a subset of A32), program fragments
that use different encodings can be linked into a single program.

To switch from one format to another, the program uses special bx (branch and
exchange instruction set) and blx (branch with link and exchange instruction set)
instructions. When the target address is statically known, the assumption is that
the programmer knows that the source and target encodings are different, so the
processor needs to change modes in the course of performing the branch. When
the target address is in a register (as it will be when returning from a subroutine, or
when calling through a pointer, a virtual method table, or a closure), Arm exploits
the fact that instructions never appear at an odd address (T32 instructions are
always word aligned; A32 instructions are always longword aligned). Because the
least significant bit of the target address must always be 0, this bit can be used in
the register to specify the target instruction set: 0 means A32; 1 means T32.

Calling Sequence Details The calling sequence to maintain the LLVM/ArmEXAMPLE 9.69
LLVM/Arm calling sequence stack is as follows. The caller

1. saves (into the ‘‘local variables and temporaries’’ part of its frame) any caller-
saves registers whose values are still needed

2. puts up to four small arguments (or ‘‘chunks’’ of larger arguments) into registers
r0–r3

3. stores the remaining arguments into the argument build area at the top of the
current frame

4. performs a bl or blx instruction, which puts the return address in register lr,
jumps to the target address, and optionally changes instruction set encoding

On 32-bit Arm, the caller-saves registers are just the ones that are used for
arguments—namely, r0–r3. In a language with nested subroutines (not sup-
ported by Apple’s compiler), the caller would need to place the static link into
another register immediately before performing the bl or blx.

In its prologue, the callee

1. pushes any necessary registers onto the stack
2. initializes the frame pointer by adding an appropriate small constant to the sp,

placing the result in r7
3. subtracts enough from the sp to make space for local variables, temporaries,

and the argument build area at the top of the stack, rounding down to a lower
address if necessary to ensure that these objects have appropriate alignment



9.2.2 Stack Case Studies: LLVM on Arm; gcc on x86 C 199

Saved registers include (a) the frame pointer, r7 (assuming the current routine
needs a frame pointer of its own); (b) any callee-saves registers (r4–r6 and r8–
r11) whose values may be changed before returning; and (c) the link register, lr,
if the current routine is not a leaf, or if it uses lr as an additional temporary.

In its epilogue, immediately before returning, the callee

1. places the function return value (if any) into r0–r3 or memory, as appropriate
2. subtracts a small constant from r7, placing the result in sp; this effectively

deallocates the bulk of the frame
3. pops saved registers from the stack, with the pc taking the place held by lr in

the corresponding save in the prologue; this has the side effect of branching
back to the caller (see Sidebar C 9.10)

Finally, if appropriate, the caller moves the return value to wherever it is needed.
Caller-saves registers are restored lazily over time, as their values are needed.

To support the use of symbolic debuggers, the compiler generates a wealth of
symbol table information, in the open-source DWARF format [DWA17]. It embeds
this information into the object file. The information is most accurate when the
program is compiled without any code improvement (-O0). For each subroutine,
the information includes the starting and ending addresses of the routine; the
name, type, and location (register name or frame pointer offset) of every formal
parameter and local variable; the set of instructions corresponding to each line of
source code; the size and layout of the stack frame; and a list of which registers
were saved.

gcc on x86

To illustrate the differences among compilers and architectures, our second case
study considers the GNU compiler collection (gcc, version 4.8.1) on the x86.
We begin with 32-bit code and then explain the differences that obtain on 64-bit
machines. Our example again focuses mostly on C, which acts as sort of a ‘‘lowest
common denominator’’ among high-level languages. We also consider nested
subroutines and closures, however, since these appear in some of the collection’s
supported languages.

An overview of the x86-32 ISA appears in Section C 5.4.5. Given the machine’s
CISC heritage and the comparatively small number of registers (only six are avail-
able for general-purpose use), all arguments are passed on the stack when running
in 32-bit mode. To give the compiler the freedom to evaluate arguments out of
order when desired, recent versions of gcc employ an argument build area similar
to that of the LLVM case study. Unlike LLVM, recent versions of gcc omit the use
of a separate frame pointer by default, making register ebp (rbp in 64-bit mode)
available for other purposes; exceptions occur when specified by the programmer
(using the -no-omit-frame-pointer command-line switch), when compiling at
optimization levels -O0 and -O1, when a subroutine has a local variable whose
size is not known at compile time (Figure 8.7), or when a subroutine calls alloca
(a legacy mechanism to create temporary space within the current stack frame).



C 200 Chapter 9 Subroutines and Control Abstraction

4 bytes/32 bits

Local variables
and

temporaries

Arguments

(Saved fp)

Other saved
registers

Return address

(Static link)

sp

(SL

Direction of stack growth
(lower addresses)

(fp

1

Current frame

Previous (calling)
frame

n

Space to build
argument lists

)

)

Figure 9.9 Layout of the subroutine call stack for the GNU Compiler Collection (gcc) on
32-bit x86. The return address is present in all frames. All other parts of the frame are optional;
they are present only if required by the current subroutine. In x86 terminology, the sp is named
esp; the fp is ebp (extended base pointer). The static link, in languages with nested subroutines,
is passed in register ecx. SL marks the location that will be referenced by the static link (if any)
of any subroutine nested immediately inside this one. A routine that is neither innermost nor
outermost will save its own static link at the location referenced by the static link of its children.

Historically, omission of the frame pointer made it difficult or even impossible for
symbolic debuggers to perform a ‘‘backtrace’’ operation (identifying the frames of
calling routines), but this limitation has been removed with modern debugging
standards like DWARF.

Calling sequences for the x86 vary from vendor to vendor, and have evolved
considerably over time, as changes in microarchitecture changed performance
tradeoffs. Most modern sequences use the call and ret instructions. The former
pushes the return address onto the stack, updating the sp, and branches to the
called routine. The latter pops the return address off the stack, again updating the
sp, and branches back to the caller. Several additional, more complex instructions,
retained for backward compatibility, are typically not generated by modern compil-
ers, because they were designed for calling sequences with an explicit display and
without an argument build area, or because they don’t pipeline as well as equivalent
sequences of simpler instructions.

Argument Passing Conventions Figure C 9.9 shows a stack frame for the x86-32.EXAMPLE 9.70
gcc/x86-32 stack layout As in the LLVM case study, the sp points to the last used location on the stack.



9.2.2 Stack Case Studies: LLVM on Arm; gcc on x86 C 201

Arguments in the process of being passed to another routine are accessed via
offsets from the sp; everything else is accessed via offsets from the fp, if present—
otherwise the sp. All arguments are passed in the stack. In languages (Ada, in
particular) that permit nested subroutines, register ecx is used to pass the static
link. If the current routine has at least one lexically nested child and is itself lexically
nested in some parent, then a copy of the static link will be saved into the stack just
above (at a lower address than) the area used for local variables and temporaries.
When a nested routine is running, its own static link will point to the saved link
in this current routine, or to the local variables and temporaries, if this current
routine is outermost.

Functions return integer or pointer values in register eax. Floating-point values
are returned in the first of the ‘‘x87’’ floating-point registers, st(0). Composite
values (records, arrays, etc.) of 8 bytes or less are returned in the register pair
eax–edx, as are ‘‘long long’’ (64-bit) integers. For larger return values (records,
arrays, etc.), the compiler passes a hidden first argument (on the stack) whose value
is the address at which the return value should be written.

Calling Sequence Details The calling sequence to maintain the gcc/x86-32 stackEXAMPLE 9.71
gcc/x86-32 calling
sequence

is as follows. The caller

1. saves (into the ‘‘local variables and temporaries’’ part of its frame) any caller-
saves registers whose values are still needed

2. puts arguments into the build area at the top of the current frame
3. places the static link (if any) in register ecx
4. executes a call instruction

The caller-saves registers consist of eax, edx, and ecx. Step 1 is skipped if none of
these contain a value that will be needed later. Step 2 is skipped if the subroutine
has no parameters. Step 3 is skipped if the language has no nested subroutines, or if
the called routine is declared at the outermost nesting level. The call instruction
pushes the return address and jumps to the subroutine.

In its prologue, the callee

1. pushes the fp onto the stack (if the current routine uses the fp), implicitly
decrementing the sp by 4 (one word).

2. copies the sp into the fp if necessary, thereby establishing a frame pointer for
the current routine

3. pushes any callee-saves registers whose values may be overwritten by the current
routine

4. pushes the static link (ecx) if the language has nested subroutines and this is
not a leaf

5. subtracts the remainder of the frame size from the sp

The callee-saves registers are ebx, esi, edi, and, for routines that don’t need a
frame pointer, ebp. For routines that do need a frame pointer, registers esp and



C 202 Chapter 9 Subroutines and Control Abstraction

ebp (the sp and fp, respectively) are saved by Steps 1 and 2. The instructions for
some of these steps may be replaced with equivalent sequences by the compiler’s
code improver, and may be mixed into the rest of the subroutine by the instruction
scheduler. In particular, if the value subtracted from the sp in Step 5 is made large
enough to accommodate the callee-saves registers, then the pushes in Steps 3 and 4
may be moved after Step 5 and replaced with fp- or sp-relative stores.

In its epilogue, the callee

1. sets the return value
2. restores any callee-saved registers
3. copies the fp into the sp, or subtracts a constant from the sp, as appropriate,

thereby deallocating the frame
4. pops the fp, if any, off the stack
5. returns

Steps 3 and 4 may be effected on the x86 by a single leave instruction. As in
the previous case study, the caller moves the return value, if it is in a register, to
wherever it is needed. It restores any caller-saves registers lazily over time.

Because Ada allows subroutines to nest (and Ada 2005 allows arbitrary subrou-EXAMPLE 9.72
Subroutine closure
trampoline

tines to be passed as parameters), a subroutine S that is passed as a parameter from
P to Q must be represented by a closure, as described in Section 3.6.1. In many
compilers the closure is a data structure containing the address of S and the static
link that should be used when S is called. In gcc, however, the closure contains
an x86 code sequence known as a trampoline—typically a pair of instructions to
load ecx with the appropriate static link and then jump to the beginning of S. The
trampoline resides in the ‘‘local variables and temporaries’’ section of P’s activa-
tion record. Its address is passed to Q. Rather than ‘‘interpret’’ the closure at run
time, Q actually calls it. One advantage of this mechanism is its interoperability
across programming languages: C functions passed as parameters are simply code
addresses. In fact, if S is declared at the outermost level of lexical nesting, then gcc
can pass an ordinary code address even when compiling Ada source; in this case
no trampoline is required.

x86-64 As noted in Section C 5.4.5, the x86-64 has 16 integer registers instead
of only 8. AMD, which developed the ISA for the wider architecture, suggests
a calling sequence that makes more use of registers (and less of the stack), in a
manner reminiscent of Arm (Example C 9.69) and other RISC machines. The GNU
compiler generally conforms to AMD’s suggestions.

Figure C 9.10 shows a stack frame for the x86-64. The first six integer arguments
are passed in registers rdi, rsi, rdx, rcx, r8, and r9, in that order. The static
link, when needed, is passed in r10 (not rcx). Registers rbx and r12–r15 are
callee saves; rax, r10, r11, and the argument registers are caller-saves. Integer
function values are returned in rax and (if needed) rdx. The first eight floating-
point arguments are passed in XMM/SSE registers xmm0–xmm7 (the legacy x87
registers are for the most part ignored). Additional floating-point arguments are



9.2.2 Stack Case Studies: LLVM on Arm; gcc on x86 C 203

passed on the stack. Floating-point function values are returned in xmm0 and (if
needed) xmm1. The stack is always 16-byte aligned at the time of a call.

Perhaps the most interesting difference between the x86-32 and x86-64 conven-EXAMPLE 9.73
The x86-64 red zone tions is AMD’s specification of a ‘‘red zone’’ beyond the sp. Where the last used

word on the stack is guaranteed on x86-32 to be at an address no lower than the sp,
on x86-64 it can be up to 128 bytes beyond this point—in effect, the sp protects
not only the data at higher addresses (below it in the stack), but up to 128 bytes of
additional data as well. Signal handlers and other system software are required to
respect this convention. As a result, leaf routines that need a stack frame smaller
than 128 bytes need not update the sp. For frequent calls to very small routines,
the two-instruction savings in per-call bookkeeping can be significant.

3CHECK YOUR UNDERSTANDING

51. For each of our three case studies, explain which aspects of the calling sequence
and stack layout are dictated by the hardware, and which are a matter of software
convention.

52. Why don’t LLVM and gcc restore caller-saves registers immediately after a
call?

53. What is a subroutine closure trampoline? How does it differ from the usual im-
plementation of a closure described in Section 3.6.1? What are the comparative
advantages of the two alternatives?

DESIGN & IMPLEMENTATION

9.11 Executing code in the stack
A disadvantage of trampoline-based closures is the need to execute code in the
stack. Many machines and operating systems disallow such execution, for at least
two important reasons. First, as noted in Section C 5.1, modern microprocessors
typically have separate instruction and data caches, for fast concurrent access.
Allowing a process to write and execute the same region of memory means that
these caches must be kept mutually consistent (coherent), a task that introduces
significant hardware complexity (on some machines it requires execution of a
special hardware instruction). Second, many computer security breaches involve
a code injection attack, in which an intruder exploits software vulnerabilities
(e.g., the lack of array bounds checking in C) to write instructions into the stack,
and to overwrite the saved return address so that execution will jump into that
code when the current subroutine returns. Such an attack is possible only on
machines in which writable data are also executable. When compiling code for
use on modern systems, gcc embeds a call to a library routine that reverses the
system default and re-enables stack execution prior to using a trampoline.



C 204 Chapter 9 Subroutines and Control Abstraction

sp

7

Space to build
argument lists

“Red zone”
(128 bytes)

Local variables
and

temporaries

Arguments

(fp

Direction of
stack growth

(lower addresses)

Current frame

Previous
(calling)
frame

n

8 bytes/64 bits

(Static link)

(Saved fp)

Other saved
registers

Return address

(SL )

)

Figure 9.10 Layout of the subroutine call stack for the GNU Compiler Collection (gcc) on
64-bit x86. Conventions differ from those of Figure C 9.9 in three principal ways: (1) most data
are 64 bits wide; (2) the first 6 integer arguments are passed in registers rather than on the stack;
(3) leaf routines are permitted to use up to 128 bytes of space beyond the top of the stack,
without updating the sp.

54. Explain the circumstances under which a subroutine needs a frame pointer
(i.e., under which access via displacement addressing from the stack pointer
will not suffice).

55. Under what circumstances must an argument that was passed in a register also
be saved into the stack?

56. What is the purpose of the ‘‘red zone’’ on x86-64?



9Subroutines and Control Abstraction

9.2.3 Register Windows

As an alternative to saving and restoring registers on subroutine calls and returns,
the original Berkeley RISC machines [PD80, Pat85] incorporated a hardware mech-
anism known as register windows. The basic idea is to provide a very large setEXAMPLE 9.74

Register windows on the
SPARC

of physical registers, most of which are organized as a collection of overlapping
windows (Figure C 9.11). A few register names (r0–r7 in the figure) always refer
to the same locations, but the rest (r8–r31 in the figure) are interpreted relative
to the currently active window. On a subroutine call, the hardware moves to a
different window. To facilitate the passing of parameters, the old and new windows
overlap: the top few registers in the caller’s window (r24–r31 in the figure) are
the same as the bottom few registers in the callee’s window (r8–r15 in the figure).
On a machine with register windows, the compiler places values of use only within
the current subroutine in the middle part of the window. It copies values to the
upper part of the window to pass them to a called routine, within which they are
read from the lower part of the window.

Since the number of physical windows is fixed, a long chain of subroutine
calls can cause the hardware to run off the end of the register set, resulting in a
‘‘window overflow’’ interrupt that drops the processor into the operating system.
The interrupt handler then treats the set of available windows as a circular buffer.
It copies the contents of one or more windows to memory and then resumes
execution. Later, a ‘‘window underflow’’ interrupt will occur when control attempts
to return into a window whose contents have been written to memory. Again the
operating system recovers, by restoring the saved registers and resuming execution.
In practice, eight windows appear to suffice to make overflow and underflow
relatively rare in typical programs.

Register windows have been used in several RISC processors, but only one of
these, the SPARC, is commercially significant today. The Intel IA-64 (Itanium),
introduced shortly after the turn of the century, also uses register windows, though
it is not a RISC machine. The advantage of windows, of course, is that they reduce

C 205



C 206 Chapter 9 Subroutines and Control Abstraction

Outputs

Locals

Inputs

Outputs

Locals

Inputs

Outputs

Locals

Inputs

Globals

Main
program

r31

r24
r23

r16
r15

r8

r8

r7

r0

r7

r0
Globals

Subroutine
A

Globals

Subroutine
B

r31

r24
r23
r16
r15

Figure 9.11 Register windows. When the main program calls subroutine A, and again when A
calls B, register names r0–r7 continue to refer to the same locations, but register names r8–r31
are changed to refer to a new, overlapping window. High-numbered registers in the caller share
locations with low-numbered registers in the callee.

the number of loads and stores required for the typical subroutine call. At the
same time, register windows significantly increase the amount of state associated
with the currently running program. When the operating system decides to give
the processor to a different application for a while (something that most systems
do many times per second), it must save all this state to memory, or arrange for
the processor to trap back into the OS if the new process attempts to access an
unsaved window. Worse, while register windows nicely capture the referencing
environment of a single thread of control, they do not work well for languages
that need more than one referencing environment (execution context). Several
language features, including continuations (Section 6.2.2), iterators (Section 6.5.3),
and coroutines (Section 9.5), are difficult to implement on a machine with register
windows, because they require that we save and restore not only the visible registers,
but those in other windows as well, when switching between contexts. It is unclear
whether the reduction in subroutine call overhead outweighs the extra cost of
context switches for typical application workloads, particularly given that loads
and stores for parameters are almost always cache hits.



9.2.3 Register Windows C 207

3CHECK YOUR UNDERSTANDING

57. What are register windows? What purpose do they serve?

58. Which commercial instruction sets include register windows?

59. Explain the concepts of register window overflow and underflow.

60. Why are register windows a potential problem for multithreaded programs?



9Subroutines and Control Abstraction

9.3.2 Call by Name

Call by name implements the normal-order argument evaluation described in
Section 6.6.2. A call-by-name parameter is reevaluated in the caller’s referencing
environment every time it is used. The effect is as if the called routine had been
textually expanded at the point of call, with the actual parameter (which may be a
complicated expression) replacing every occurrence of the formal parameter. To
avoid the usual problems with macro parameters, the ‘‘expansion’’ is defined to
include parentheses around the replaced parameter wherever syntactically valid,
and to make ‘‘suitable systematic changes’’ to the names of any formal parameters
or local identifiers that share the same name, so that their meanings never con-
flict [NBB+63, p. 12]. Call by name was the default in Algol 60; call by value was
available as an alternative. In Simula call by value was the default; call by name was
the alternative.

To implement call by name, Algol 60 implementations passed a hidden subrou-
tine that evaluated the actual parameter in the caller’s referencing environment.
Such a hidden routine is usually called a thunk.1 In most cases thunks are trivial. If
an actual parameter is a variable name, for example, the thunk simply reads the
variable from memory. In some cases, however, a thunk can be elaborate. PerhapsEXAMPLE 9.75

Jensen’s device the most famous occurs in what is known as Jensen’s device, named after Jørn
Jensen [Rut67]. The idea is to pass to a subroutine both a built-up expression and
one or more of the variables used in the expression. Then by changing the values
of the individual variable(s), the called routine can deliberately and systematically
change the value of the built-up expression. This device can be used, for example,
to write a summation routine:

1 In general, a thunk is a procedure of zero arguments used to delay evaluation of an expression.
Other examples of thunks can be seen in the delay mechanism of Example 6.88 and the promise
constructor of Exercise 11.18.

C 209



C 210 Chapter 9 Subroutines and Control Abstraction

real procedure sum(expr, i, low, high);
value low, high;

comment low and high are passed by value;
comment expr and i are passed by name;

real expr;
integer i, low, high;

begin
real rtn;
rtn := 0;
for i := low step 1 until high do

rtn := rtn + expr;
comment the value of expr depends on the value of i;

sum := rtn
end sum

Now to evaluate the sum

y =
∑

1≤x≤10

3x2 − 5x + 2

we can simply say

y := sum(3*x*x - 5*x + 2, x, 1, 10);

Label Parameters

Both Algol 60 and Algol 68 allowed a label to be passed as a parameter. If a
called routine performed a goto to such a label, control would usually need to
escape the local context, unwinding the subroutine call stack as it did so. Details
of the unwinding operation would depend on the location of the label. For each
intervening scope, the goto would have to restore saved registers, deallocate the

DESIGN & IMPLEMENTATION

9.12 Call by name
In practice, most uses of call by name in Algol 60 and Simula programs served to
allow a subroutine to change the value of an actual parameter; neither language
offered call by reference. Unfortunately, call by name is significantly more
expensive than call by reference: it requires the invocation of a thunk (as opposed
to a simple indirection) on every use of a formal parameter. Call by name is
also prone to subtle program bugs when a change to a variable in a surrounding
scope unintentionally alters the value of a formal parameter. (Call by reference
suffers from a milder form of this problem, as discussed in Example 3.20.)
Such deliberate subtleties as Jensen’s device are comparatively rare, and can be
imitated in other languages through the use of formal subroutines. Call by name
was dropped in Algol 68, in favor of call by reference.



9.3.2 Call by Name C 211

stack frame, and perform any other operations normally handled by epilogue code.
To implement label parameters, Algol implementations typically passed a thunk
that performed the appropriate operations for the given label. Note that the target
label would generally need to lie in some surrounding scope, where it was visible
to the caller under static scoping rules.

Label parameters were usually used to handle exceptional conditions—condi-
tions that prevent a subroutine from performing its usual operation, and that
cannot be handled in the local context. Instead of returning, an Algol routine
that encountered a problem (e.g., invalid input) could perform a goto to a label
parameter, on the assumption that the label referred to code that would perform
some remedial operation, or print an appropriate error message. In more recent
languages, label parameters have been replaced by more structured exception
handling mechanisms, as discussed in Section 9.4.

3CHECK YOUR UNDERSTANDING

61. What is call by name? What language first provided it? Why isn’t it used by the
language’s descendants?

62. What is call by need? How does it differ from call by name? What modern
languages use it?

63. How does a subroutine with call-by-name parameters differ from a macro?

64. What is a thunk? What is it used for?

65. What is Jensen’s device?

DESIGN & IMPLEMENTATION

9.13 Call by need
Functional languages like Miranda and Haskell typically pass parameters us-
ing a memoizing implementation of normal-order evaluation, as described in
Section 6.6.2. This lazy implementation is sometimes called call by need. Memo-
ization calculates and records the value of a parameter the first time it is needed,
and uses the recorded value thereafter. In the absence of side effects, call by
need is indistinguishable from call by name. It avoids the expense of repeated
evaluation, but precludes the use of techniques like Jensen’s device in languages
that do have side effects. Among imperative languages, call by need appears
in the scripting language R, where it serves to avoid the expense of evaluating
(even once) any complex arguments that are not actually needed.



9Subroutines and Control Abstraction

9.5.3 Implementation of Iterators

Consider the following for loop from Example 6.66:EXAMPLE 9.76
Coroutine-based iterator
invocation for i in range(first, last, step):

...

Using coroutines, a compiler might translate this as

iter := new from_to_by(first, last, step, i, done, current_coroutine)
while not done do

. . .
transfer(iter)

destroy(iter)

After the loop completes, the implementation can reclaim the space consumed by
iter.

The definition of from_to_by itself is quite straightforward:EXAMPLE 9.77
Coroutine-based iterator
implementation coroutine from_to_by(from_val, to_val, by_amt : int;

ref i : int; ref done : bool; caller : coroutine)
i := from_val
if by_amt > 0 then

done := from_val ≥ to_val
detach
loop

i +:= by_amt
done := i ≥ to_val
transfer(caller) –– yield i

C 213



C 214 Chapter 9 Subroutines and Control Abstraction

else
done := from_val ≤ to_val
detach
loop

i +:= by_amt
done := i ≤ to_val
transfer(caller) –– yield i

Parameters i and done are passed by reference so that the iterator can modify them
in the caller’s context. The caller’s identity is passed as a final argument so that the
iterator can tell which coroutine to resume when it has computed the next loop
index. Because the caller is named explicitly, it is easy for iterators to nest, as in
Figure 6.5.

Single-Stack Implementation

While coroutines suffice for the implementation of iterators, they are not necessary.
A simpler, single-stack implementation is also possible. Because a given iterator
(e.g., an instance of from_to_by) is always resumed at the same place in the code
(between iterations of a given for loop), we can be sure that the subroutine call
stack will always contain the same frames whenever the iterator runs. Moreover,
since yield statements can appear only in the main body of the iterator (never in
nested routines), we can be sure that the stack will always contain the same frames
whenever the iterator transfers back to its caller. These two facts imply that we can
place the frame of the iterator directly on top of the frame of its caller in a single
central stack.

When an iterator is created, its frame is pushed on the stack. When it yields a
value, control returns to the for loop, but the iterator’s frame is left on the stack.
If the body of the loop makes any subroutine calls, the frames for those calls will
be allocated beyond the frame of the iterator. Since control must return to the
loop before the iterator resumes, we know that such frames will be gone again
before the iterator has a chance to see them: if it needs to call subroutines itself,
the stack above it will be clear. Likewise, if the iterator calls any subroutines, they
will return (popping their frames from the stack) before the for loop runs again.
Nested iterators present no special problems (see Exercise C 9.37).

Data Structure Implementation

Compilers for C# 2.0 employ yet another implementation of iterators. Like Java,
C# 1.1 provided iterator objects. Each such object implements the IEnumerator
interface, which provides MoveNext and Current methods. Typically an iteratorEXAMPLE 9.78

Iterator usage in C# is obtained by calling the GetEnumerator method of an object (a container) that
implements the IEnumerable interface:

for (IEnumerator i = myTree.GetEnumerator(); i.MoveNext();) {
object o = i.Current;
Console.WriteLine(o.ToString());

}



9.5.3 Implementation of Iterators C 215

C# 2.0 provides true iterators as an extension of iterator objects. The programmer
simply declares a method that contains one or more yield return statements,
and whose return type is IEnumerator or IEnumerable. Here is an example ofEXAMPLE 9.79

Implementation of C#
iterators

the latter:

static IEnumerable FromToBy (int fromVal, int toVal, int byAmt)
{

if (byAmt >= 0) {
for (int i = fromVal; i <= toVal; i += byAmt) {

yield return i;
}

} else {
for (int i = fromVal; i >= toVal; i += byAmt) {

yield return i;
}

}
}

The compiler automatically transforms this code into a hidden class with a
GetEnumerator method, along the lines of Figure C 9.12. Within this code,
an explicit state variable keeps track of the ‘‘program counter’’ of the last yield
statement. In addition, local variable i of the true iterator becomes a data member
of the FromToByImpl class, leaving the iterator with no need for a stack frame
across iterations of the loop. In a quite literal sense, the compiler transforms each
true iterator into an iterator object.

Recursive iterators present no particular difficulties: a nested iterator is allocated
on demand when the outer iterator enters a foreach loop, and is referred to by a
reference in that outer iterator. The details are deferred to Exercise C 9.38. Because
iterator objects are allocated from the heap, the C# implementation of true iterators
may be somewhat slower than the stack-based implementation of the previous
subsection.

3CHECK YOUR UNDERSTANDING

66. Describe the ‘‘obvious’’ implementation of iterators using coroutines.

67. Explain how the state of multiple active iterators can be maintained in a single
stack.

68. Describe the transformation used by C# compilers to turn a true iterator into
an iterator object.



C 216 Chapter 9 Subroutines and Control Abstraction

static IEnumerable FromToBy(int fromVal, int toVal, int byAmt) {
return new FromToByImpl(fromVal, toVal, byAmt);

}
class FromToByImpl : IEnumerator, IEnumerable {

enum State {starting, goingUp, goingDown, done}
int i, tv, ba;
State s;

public FromToByImpl(int fromVal, int toVal, int byAmt) {
i = fromVal; tv = toVal; ba = byAmt; s = State.starting;

}
public IEnumerator GetEnumerator() {

return this;
}
public object Current {

get { return i; }
}
public bool MoveNext() {

switch (s) {
case State.starting :

if (ba >= 0) {
if (i <= tv) { s = State.goingUp; return true; }
else { s = State.done; return false; }

} else {
if (i >= tv) { s = State.goingDown; return true; }
else { s = State.done; return false; }

}
case State.goingUp :

i += ba;
if (i <= tv) return true;
else { s = State.done; return false; }

case State.goingDown :
i += ba;
if (i >= tv) return true;
else { s = State.done; return false; }

default: // for completeness
case State.done : return false;

}
}
public void Reset() {

s = State.starting;
}

}

Figure 9.12 Iterator object equivalent of a true iterator in C#. This handwritten code
corresponds to Example C 9.79. It represents, at the source level, what the compiler creates at
the level of intermediate code: a state machine that tracks the program counter of the original
iterator, with a starting state, an ending state, and one state for each yield return statement.
The arms of the switch statement capture the code paths in the original iterator that move from
one state to the next.



9Subroutines and Control Abstraction

9.5.4 Discrete Event Simulation

Suppose that we wish to experiment with the flow of traffic in a city. A computerized
traffic model, if it captures the real world with sufficient accuracy, will allow us to
predict the effects of construction projects, accidents, increased traffic due to new
development, or changes to the layout of streets. It is difficult (though certainlyEXAMPLE 9.80

Sequential simulation of a
complex physical system

not impossible) to write such a simulation in a conventional sequential language.
We would probably represent each interesting object (automobile, intersection,
street segment, etc.) with a data structure. Our main program would then look
something like this:

while current_time < end_of_simulation
calculate next time t at which an interesting interaction will occur
current_time := t
update state of objects to reflect the interaction
record desired statistics

print collected statistics

The problem with this approach lies in determining which objects will interact
next, and in remembering their state from one interaction to the next. It is in some
sense unnatural to represent active objects such as cars with passive data structures,
and to make time the active entity in the program. An arguably more attractive
approach is to represent each active object with a coroutine, and to let each object
keep track of its own state.

If each active object can tell when it will next do something interesting, then we
can determine which objects will interact next by keeping the currently inactive
coroutines in a priority queue, ordered by the time of their next event. We mightEXAMPLE 9.81

Initialization of a
coroutine-based traffic
simulation

begin a one-day traffic simulation by creating a coroutine for each trip to be taken by
a car that day, and inserting each coroutine into the priority queue with a ‘‘wakeup’’
time indicating when the trip is to begin:

C 217



C 218 Chapter 9 Subroutines and Control Abstraction

coroutine trip(. . . )
. . .
for each trip t

p := new trip(. . . )
schedule(p, t.start_time)

Let us assume that we think of street segments as passive, and represent them
with data structures. At any given moment, we can model a segment by the numberEXAMPLE 9.82

Traversing a street segment
in the traffic simulation

of cars that it is carrying in each direction. This number in turn will affect the speed
at which the cars can safely travel. Whenever it awakens, the coroutine representing
a trip examines the next street segment over which it needs to travel. Based on the
current load on that segment, it calculates how much time it will take to traverse it,
and schedules itself to awaken again at an appropriate point in the future:

coroutine trip(origin, destination : location)
plan a route from origin to destination
detach
for each segment of the route

calculate time i to reach the end of the segment
schedule(current_coroutine, current_time + i)

The schedule operation is easily built on top of transfer:EXAMPLE 9.83
Scheduling a coroutine for
future execution schedule(p : coroutine; t : time)

–– p may be self or other
insert (p, t) in priority queue
if p = current_coroutine –– self

extract earliest pair (q, s) from priority queue
current_time := s
transfer(q)

In some cases, it may be difficult to determine when to reschedule a given object.
Suppose, for example, that we wish to more accurately model the effects of traffic
signals at intersections. We might represent each traffic signal with a data structureEXAMPLE 9.84

Queueing cars at a traffic
light

that records the waiting cars in each direction, and a coroutine that lets cars through
as the signal changes color:

record controlled_intersection =
EW_cars, NS_cars : queue of trip
const per_car_lag_time : time

–– how long it takes a car to start after its predecessor does
coroutine signal(EW_duration, NS_duration : time)

detach
loop

change_time := current_time + EW_duration
while current_time < change_time

if EW_cars not empty
schedule(dequeue(EW_cars), current_time)

schedule(current_coroutine, current_time + per_car_lag_time)



9.5.4 Discrete Event Simulation C 219

change_time := current_time + NS_duration
while current_time < change_time

if NS_cars not empty
schedule(NS_cars.dequeue(), current_time)

schedule(current_coroutine, current_time + per_car_lag_time)

When it reaches the end of a street segment that is controlled by a traffic signal,EXAMPLE 9.85
Waiting at a light a trip need not calculate how long it will take to get through the intersection.

Rather, it enters itself into the appropriate queue of waiting cars and ‘‘goes to sleep,’’
knowing that the signal coroutine will awaken it at some point in the future:

coroutine trip(origin, destination : location)
plan a route from origin to destination
detach
for each segment of the route

calculate time i to reach the end of the segment
schedule(current_coroutine, current_time + i)
if end of segment has a traffic light

identify appropriate queue Q
Q.enqueue(current_coroutine)
sleep()

Like schedule, sleep is easily built on top of transfer:EXAMPLE 9.86
Sleeping in anticipation of
future execution sleep()

extract earliest pair (q, s) from priority queue
current_time := s
transfer(q)

The schedule operation, in fact, is simply

schedule(p : coroutine; t : time)
insert (p, t) in priority queue
if p = current_coroutine

sleep()

Obviously this traffic simulation is too simplistic to capture the behavior of cars
in a real city, but it illustrates the basic concepts of discrete event simulation. More
sophisticated simulations are used in a wide range of application domains, including
all branches of engineering, computational biology, physics and cosmology, and
even computer design. Multiprocessor simulations (see reference [VF94], for
example) are typically divided into a ‘‘front end’’ that simulates the processors
and a ‘‘back end’’ that simulates the memory subsystem. Each coroutine in the
front end consists of a machine-language interpreter that captures the behavior of
one of the system’s processing cores. Each coroutine in the back end represents
a load or a store instruction. Every time a processor performs a load or store,
the front end creates a new coroutine in the back end. Data structures in the



C 220 Chapter 9 Subroutines and Control Abstraction

back end represent various hardware resources, including caches, buses, network
links, message routers, and memory modules. The coroutine for a given load or
store checks to see if its location is in the local cache. If not, it must traverse the
interconnection network between the processor and memory, competing with
other coroutines for access to hardware resources, much as cars in our simple
example compete for access to street segments and intersections. The behavior of
the back-end system in turn affects the front end, since a processor must wait for
a load to complete before it can use the data, and since the rate at which stores
can be injected into the back end is limited by the rate at which they propagate to
memory.

3CHECK YOUR UNDERSTANDING

69. Summarize the computational model of discrete event simulation. Explain the
significance of the time-based priority queue.

70. When building a discrete event simulation, how does one decide which things
to model with coroutines, and which to model with data structures?

71. Are all inactive coroutines guaranteed to be in the priority queue? Explain.



9Subroutines and Control Abstraction

9.9 Exercises

9.29 Suppose you wish to minimize the size of closures in a language implementa-
tion that uses a display to access nonlocal objects. Assuming a language like
Pascal or Ada, in which subroutines have limited extent, explain how an ap-
propriate display for a formal subroutine can be calculated when that routine
is finally called, starting with only (1) the value of the frame pointer, saved in
the closure at the time that the closure was created, (2) the subroutine return
addresses found in the stack at the time the formal subroutine is finally called,
and (3) static tables created by the compiler. How costly is your scheme?

9.30 Elaborate on the reasons why even parameters passed in registers may some-
times need to have locations in the stack. Consider all the cases in which it
may not suffice to keep a parameter in a register throughout its lifetime.

9.31 Most versions of the C library include a function, alloca, that dynamically
allocates space within the current stack frame.2 It has two advantages over
the usual malloc, which allocates space in the heap: it’s usually very fast, and
the space it allocates is reclaimed automatically when the current subroutine
returns. Assuming the programmer wants deallocation to happen then, it’s
convenient to be able to skip the explicit free operations. How might you
implement alloca in conjunction with the calling conventions of our various
case studies?

9.32 Explain how to extend the conventions of Figure C 9.9 and Section C 9.2.2 to
accommodate arrays whose bounds are not known until elaboration time (as
discussed in Section 8.2.2). What ramifications does this have for the use of
separate stack and frame pointers?

2 Unfortunately, alloca is not POSIX compliant, and implementations vary greatly in their seman-
tics and even in details of the interface. Portable programs are wise to avoid this routine.

C 221



C 222 Chapter 9 Subroutines and Control Abstraction

9.33 In all three of our case studies, stack-based arguments were placed into the
argument build area in ‘‘reverse’’ order, with the lowest-numbered argument
at the top. Explain why this is important. (Hint: Consider subroutines with
variable numbers of arguments, as discussed in Section 9.3.3.)

9.34 How would you implement nested subroutines as parameters on a machine
that doesn’t let you execute code in the stack? Can you pass a simple code
address, or do you require that closures be interpreted at run time?

9.35 If you have read the rest of Chapter 9, you may have noticed that the term
‘‘trampoline’’ is also used in conjunction with the implementation of signal
handlers (Section 9.6.1). What is the connection (if any) between these uses
of the term?

9.36 Explain how you might implement setjmp and longjmp on a SPARC.
9.37 Following the code in Figure 6.5, and assuming a single-stack implementation

of iterators, trace the contents of the stack during the execution of a for loop
that iterates over all nodes of a complete, 3-level (6-node) binary tree.

9.38 Build a preorder iterator for binary trees in Java, C#, or Python. Do not use a
true iterator or an explicit stack of tree nodes. Rather, create nested iterator
objects on demand, linking them together as a C# compiler might if it were
building the iterator object equivalent of a true preorder iterator.

9.39 One source of inaccuracy in the traffic simulation of Section C 9.5.4 has to
do with the timing at traffic signals. If a signal is currently green in the EW
direction, but the queue of waiting cars is empty, the signal coroutine will
go to sleep until current_time + EW_duration. If a car arrives before the
coroutine wakes up again, it will needlessly wait. Discuss how you might
remedy this problem.



9Subroutines and Control Abstraction

9.10 Explorations

9.53 Read the Arm calling sequence standard for 64-bit (v8) code. Compare and
contrast to the conventions of Section C 9.2.2. Pay particular attention to
the lists of caller- and callee-saves registers, and to the registers used to pass
arguments. Speculate as to reasons for the differences.

9.54 Research the full range of hardware support for subroutines on the x86,
including all variants of call. Note that the leave instruction is sometimes
generated by modern compilers, but others, including enter, pushad, popad,
pushfd, and popfd, usually are not. In addition, the optional argument of
ret is almost never used, and push and pop are used sparingly. Discuss the
technological trends that have made this machinery obsolete.

9.55 As an example of hard-core CISC design, research the subroutine calling
conventions of the Digital VAX. Be sure to describe the behavior of the calls
instruction in detail.

9.56 Study the implementation of a user-level thread management package written
for the SPARC. How does it manage register windows?

9.57 Learn how parameter passing is implemented in the Glasgow Haskell com-
piler. How expensive is its call-by-need–based lazy evaluation?

9.58 Learn about the Time Warp system for discrete event simulation, developed
by David Jefferson and colleagues [JBW+87]. Discuss its relationship to both
the classic discrete event simulation of Section C 9.5.4 and the speculative
parallelism of mechanisms like transactional memory (to be discussed in
Section 13.4.5).

C 223


