
8Composite Types

8.1.4 Unions (Variant Records, Datatypes)

A variant record provides two or more alternative fields or collections of fields, only
one of which is valid at any given time. This notion has its roots in the equivalence
statement of Fortran I and in the union types of Algol 68. Building on the elementEXAMPLE 8.82

Nested structs and
unions in traditional C

type of Example 8.1, one could specify a variant record as follows in (pre-2011) C:

struct element {
char name[2];
int atomic_number;
double atomic_weight;
_Bool metallic;
_Bool naturally_occurring;
union {

struct {
char *source;

/* textual description of principal commercial source */
double prevalence;

/* fraction, by weight, of Earth's crust */
} natural_info;
double lifetime;

/* half-life in seconds of the most stable known isotope */
} extra_fields;

} copper;

Here the programmer presumably intends for the naturally_occurring field
to indicate which parts of the union are currently valid. A true value indicates
that the element has at least one naturally occurring stable isotope; in this case
fields source and prevalence are intended to describe how the element may be
obtained and how commonly it occurs. A false value indicates that the element
results only from atomic collisions or the decay of heavier elements; in this case, field
lifetime is intended to indicate how long atoms so created tend to survive before
undergoing radioactive decay. These mutually exclusive sets of fields (source and
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Figure 8.16 Likely memory layouts for element variants. The value of the naturally_
occurring field (shown here with a double border) is intended to indicate which of the
interpretations of the remaining space is valid. Field source is assumed to point to a string that
has been independently allocated.

prevalence, on the one hand, or lifetime on the other) are sometimes known
as variants. Either the first or the second variant may be useful, but never both at
once. From an implementation perspective, nonoverlapping uses suggest that the
variants may share space, as shown in Figure C 8.16.

One significant problem with our nested struct and union is the need for two
extra levels of naming. While the always-present fields can be accessed as, say,
copper.atomic_weight, fields of the inner struct are much less easy to name:
copper.extra_fields.natural_info.source.

Pascal’s principal contribution to union types was to integrate them with records.EXAMPLE 8.83
A variant record in Pascal In Pascal syntax, our running example might look like this:

type element = record
name : two_chars;
atomic_number : integer;
atomic_weight : real;
metallic : Boolean;
case naturally_occurring : Boolean of

true : (
source : string_ptr;
prevalence : real;

);
false : (

lifetime : real;
)

end;

Here the naturally_occurring field is introduced with the keyword case, to
formalize its role as a tag or discriminant. Note that the variant fields have no
extraneous levels of naming: we can refer directly to copper.source.
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Leveraging an extension long supported by gcc, C11 and its successors allow aEXAMPLE 8.84
Anonymous unions in C11
and C++11

nameless (anonymous) struct or union to appear within another struct or union.
The members of the anonymous construct are then directly visible in the surround-
ing context:

struct element {
char name[2];
int atomic_number;
double atomic_weight;
_Bool metallic;
_Bool naturally_occurring;
union {

struct {
char *source;
double prevalence;

};
double lifetime;

};
} copper;
...
copper.source = "various ores";

Anonymous nesting makes variants in C11 as convenient as those of Pascal. C++11
even allows anonymous unions in non-struct contexts:

void foo() {
union {

int a;
int b;

};
...
a = 3;

Safety

A potentially more significant problem with unions in C is the lack of type safety.EXAMPLE 8.85
Breaking type safety with
unions

Mistakes in which the programmer writes to one field of a union and then reads
from the other are relatively common:

union {
int i;
double d;

} u;
...
u.d = 3.0;
...
printf("%d", u.i);
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Here the printf statement, which attempts to output i as an integer, will (in most
implementations) take its bits from the floating-point representation of 3.0—almost
certainly a mistake, but one that the language implementation will not catch.

To avoid these sorts of errors, Algol 68 included features to track the status of
unions at run time, and to prevent access to currently invalid fields. Similar features
can be found in Ada and in ML-family languages today. Our running elementEXAMPLE 8.86

Type-safe unions in OCaml example might be written as follows in OCaml:

type natural_info = {source : string; prevalence : float};;
type synthesized_info = {lifetime : float};;
type extra_info =

| Natural of natural_info
| Synthesized of synthesized_info;;

type element = {
name : string;
atomic_number : int;
atomic_weight : float;
metallic : bool;
extra_fields : extra_info};;

As in traditional C, the variant portions of a record introduce extra levels of
nesting in OCaml. To enforce correct usage, the language implementation main-
tains a hidden tag in every union object, to indicate which variant is currently valid.
Values can be declared only as aggregates that specify the tag and all the fields:

let copper = {
name = "Cu";
atomic_number = 29;
atomic_weight = 63.546;
metallic = true;
extra_fields = Natural ({

source = "various ores and native deposits";
prevalence = 0.00005

})
};;

Individual fields can be read, but only in the context of a match expression that
verifies the value of the tag:

exception Union_error;;
let source (e : element) =

match e.extra_fields with
| Natural n -> n.source
| Synthesized _ -> raise Union_error;;

let copper_source = source copper;;
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Variant records with mandatory tags (explicit or hidden) are known as discrimi-
nated unions. Variant records without tags (as in C) are known as nondiscriminated
unions. Pascal provided both, but in the absence of an analogue of match, even
the discriminated case was difficult to implement safely (more on this in Exer-
cise C 8.38). Ada, by contrast, combines syntax reminiscent of Pascal with the type
safety of ML.

Variants in Ada

Ada variant records must always have a tag (called the discriminant). Language rulesEXAMPLE 8.87
Ada variants and tags
(discriminants)

ensure that this tag can never be changed without simultaneously assigning values
to all of the fields of the corresponding variant. The assignment can occur either
via whole-record assignment (e.g., a := b, where a and b are variant records),
or via assignment of an aggregate (e.g., p := ( polar => true, rho => 1.0,
theta => pi/2.0 )). In addition to appearing as a field within the record, the
discriminant of a variant record in Ada must also appear in the header of the
record’s declaration:

type Element (Naturally_Occurring : Boolean := True) is record
Name : String (1..2);
Atomic_Number : Integer;
Atomic_Weight : Long_Float;
Metallic : Boolean;
case Naturally_Occurring is

when True =>
Source : String_Ptr;
Prevalence : Long_Float;

when False =>
Lifetime : Long_Float;

end case;
end record;

Here we have not only declared the discriminant of the record in its header, we
have also specified a default value for it. A declaration of a variable of type Element
has the option of accepting this default value:

Copper : Element;

or overriding it:

Plutonium : Element (False);
Neptunium : Element (Naturally_Occurring => False);

-- alternative syntax

If the type declaration for Element did not specify a default value for Naturally_
Occurring, then all variables of type Element would have to provide a value.
These rules guarantee that the tag field of a variant record is never uninitialized.
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An Ada record variable whose declaration specifies a value for the discriminant is
said to be constrained. Its tag field can never be changed by a subsequent assignment.
This immutability means that the compiler can allocate just enough space to hold the
specified variant; this space may in some cases be significantly smaller than would
be required for other variants. A variable whose declaration does not provide an
initial value for the discriminant is said to be unconstrained. Its tag will be initialized
to the value in the type declaration, but may be changed by later (whole-record)
assignments, so the space that the record occupies must be large enough to hold
any possible variant.

An Ada subtype definition can also constrain the discriminant(s) of its parentEXAMPLE 8.88
A discriminated subtype in
Ada

type:

subtype Natural_Element is Element (True);

Variables of type Natural_Element will all be constrained; their Naturally_
Occurring field cannot be changed. Because Natural_Element is a subtype,
rather than a derived type, values of type Element and Natural_Element are
compatible with each other, though a run-time semantic check will usually be
required to assign the former into the latter.

Ada uses record discriminants not only for variant tags, but in general for any
value that affects the size of a record. Here is an example that uses a discriminantEXAMPLE 8.89

Discriminated array in Ada to specify the length of an array:

DESIGN & IMPLEMENTATION

8.14 The placement of variant fields
To facilitate space saving in constrained variant records, Ada requires that all
variant parts of a record appear at the end. This rule ensures that every field
has a constant offset from the beginning of the record, with no holes (in any
variant) other than those required for alignment. When a constrained variant
record is elaborated, the Ada run-time system need only allocate sufficient space
to hold the specified variant, which is never allowed to change. Pascal had a
similar rule, designed for a similar purpose. When a variant record was allocated
from the heap in Pascal (via the built-in new operator), the programmer had
the option of specifying case labels for the variant portions of the record. A
record so allocated was never allowed to change to a different variant, so the
implementation could allocate precisely the right amount of space.

Modula-2, which did not provide new as a built-in operation, eliminated the
ordering restriction on variants. All variables of a variant record type had to be
large enough to hold any variant. The usual implementation assigned a fixed
offset to every field, with holes following small internal variants as necessary.
Similar conventions apply to unions and structs in modern C.
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type Element_Array is array (Integer range <>) of Element;
type Alloy (Num_Components : Integer) is record

Name : String (1..30);
Components : Element_Array (1..Num_Components);
Tensile_Strength : Long_Float;

end record;

The <> notation in the initial definition of Element_Array indicates that the
bounds are not statically known. Further discussion of dynamic arrays appears in
Section 8.2.2. As with discriminants used for variant tags, the programmer must
either specify a default value for the discriminant in the type declaration (we did
not do so above), or else every declaration of a variable of the type must specify
a value for the discriminant (in which case the variable is constrained, and the
discriminant cannot be changed).

The Object-Oriented Alternative

In dropping variant records from their parent language, the designers of Modula-3
noted [Har92, p. 110] that much of the same effect could be obtained with classes
and inheritance. Oberon, similarly, replaced variants with a more general mecha-
nism for type extension (sidebar 10.3), and the designers of Java and C# dropped the
unions of C and C++. In place of the C code of Example C 8.82, a Java programmerEXAMPLE 8.90

Derived types as an
alternative to unions

might write

class Element {
public String name;
public int atomicNumber;
public double atomicWeight;
public boolean metallic;

}
class NaturalElement extends Element {

public String source;
public double prevalence;

}
class SyntheticElement extends Element {

public double lifetime;
}

Like the discriminated subtypes of Ada, this approach constrains each object to a
single variant at creation time, but this may not be a problem: while the class of a
particular object never changes, class-type variables are references in Java and C#.
A variable of type Element can easily refer to an object of class NaturalElement
or SyntheticElement at run time.
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3CHECK YOUR UNDERSTANDING

55. What are anonymous unions and structs? What purpose do they serve? How
is this related to the integration of variants with records in Pascal and its
descendants?

56. What is a tag (discriminant) in a variant record? In a language like Ada or
OCaml, how does it differ from an ordinary field?

57. Discuss the type safety problems that arise with variant records. How can these
problems be addressed?

58. Summarize the rules that prevent access to inappropriate fields of variant
records in OCaml and Ada.

59. Why might one wish to constrain a variable, so that it can hold only one variant
of a type?

60. Explain how classes and inheritance can be used to obtain the effect of con-
strained variant records.
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8.5.3 Dangling References

Memory access errors—dangling references, memory leaks, out-of-bounds access
to arrays—are among the most common program bugs, and among the most
difficult to find. Testing and debugging techniques for memory errors vary in when
they are performed, how much they cost, and how conservative they are. Several
commercial and open-source tools employ binary instrumentation (Section 16.2.3)
to track the allocation status of every block in memory and to check every load
or store to make sure it refers to an allocated block. These tools have proved to be
highly effective, but they can slow a program several-fold, and may generate false
positives—indications of error in programs that, while arguably poorly written, are
technically correct. Many compilers can also be instructed to generate dynamic
semantic checks for certain kinds of memory errors. Such checks must generally
be fast (much less than 2× slowdown), and must never generate false positives. In
this section we consider two candidate implementations of checks for dangling
references.

Tombstones

Tombstones [Lom75, Lom85] allow a language implementation to catch all dangling
references, to objects in both the stack and the heap. The idea is simple: rather thanEXAMPLE 8.91

Dangling reference
detection with tombstones

have a pointer refer to an object directly, we introduce an extra level of indirection
(Figure C 8.17). When an object is allocated in the heap (or when a pointer is created
to an object in the stack), the language run-time system allocates a tombstone. The
pointer contains the address of the tombstone; the tombstone contains the address
of the object. When the object is reclaimed, the tombstone is modified to contain a
value (typically zero) that cannot be a valid address. To avoid special cases in the
generated code, tombstones are also created for pointers to static objects.

For heap objects, it is easy to invalidate a tombstone when the program calls
the deallocation operation. For stack objects, the language implementation must
be able to find all tombstones associated with objects in the current stack frame
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new(my_ptr);

ptr2 := my_ptr;

delete(my_ptr);

my_ptr

my_ptr

ptr2

my_ptr

ptr2

RIP
(Potentially

reused)

Figure 8.17 Tombstones. A valid pointer refers to a tombstone that in turn refers to an object.
A dangling reference refers to an ‘‘expired’’ tombstone.

when returning from a subroutine. One possible solution is to link all stack-object
tombstones together in a list, sorted by the address of the stack frame in which the
object lies. When a pointer is created to a local object, the tombstone can simply
be added to the beginning of the list. When a pointer is created to a parameter,
the run-time system must scan down the list and insert in the middle, to keep it
sorted. When a subroutine returns, the epilogue portion of the calling sequence
invalidates the tombstones at the head of the list, and removes them from the list.

Tombstones may be allocated from the heap itself or, more commonly, from
a separate pool. The latter option avoids fragmentation problems, and makes
allocation relatively fast, since the first tombstone on the free list is always the right
size.

Tombstones can be expensive, both in time and in space. The time overhead
includes (1) creation of tombstones when allocating heap objects or using a ‘‘pointer
to’’ operator, (2) checking for validity on every access, and (3) double-indirection.
Fortunately, checking for validity can be made essentially free on most machines
by arranging for the address in an ‘‘invalid’’ tombstone to lie outside the program’s
address space. Any attempt to use such an address will result in a hardware interrupt,
which the operating system can reflect up into the language run-time system. We
can also use our invalid address, in the pointer itself, to represent the constant
nil. If the compiler arranges to set every pointer to nil at elaboration time, then
the hardware will catch any use of an uninitialized pointer. (This technique works
without tombstones, as well.)
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The space overhead for tombstones can be significant. The simplest approach is
never to reclaim them. Since a tombstone is usually significantly smaller than the
object to which it refers, a program will waste less space by leaving a tombstone
around forever than it would waste by never reclaiming the associated object. Even
so, any long-running program that continually creates and reclaims objects will
eventually run out of space for tombstones. A potential solution, which we consider
in Section 8.5.4, is to augment every tombstone with a reference count, and reclaim
tombstones themselves when the reference count goes to zero.

Tombstones have a valuable side effect. Because of double-indirection, it is easy
to change the location of an object in the heap. The run-time system need not locate
every pointer that refers to the object; all that is required is to change the address
in the tombstone. The principal reason to change heap locations is for storage
compaction, in which all dynamically allocated blocks are ‘‘scooted together’’ at
one end of the heap in order to eliminate external fragmentation. Tombstones are
not widely used in language implementations, but the Macintosh operating system
(versions 9 and below) used them internally, for references to system objects such
as file and window descriptors. They also closely resemble the implementation
used for smart pointers in the C++ standard library.

Locks and Keys

Locks and keys [FL80] are an alternative to tombstones. Their disadvantage is that
they provide only probabilistic protection from dangling pointers. Their advantage
is that they avoid the need to keep tombstones around forever (or to figure out
when to reclaim them). Again the idea is simple: Every pointer is a tuple consistingEXAMPLE 8.92

Dangling reference
detection with locks and
keys

of an address and a key. Every object in the heap begins with a lock. A pointer to
an object in the heap is valid only if the key in the pointer matches the lock in the
object (Figure C 8.18). When the run-time system allocates a new heap object, it
generates a new key value. These can be as simple as serial numbers, but should
avoid ‘‘common’’ values such as zero and one. When an object is reclaimed, its lock
is changed to some arbitrary value (e.g., zero) so that the keys in any remaining
pointers will not match. If the block is subsequently reused for another purpose,
we expect it to be very unlikely that the location that used to contain the lock will
be restored to its former value by coincidence. The original implementation of
locks and keys in Pascal considered only pointers to heap objects, as outlined above,
but in principle a run-time system could also add locks to objects allocated on the
stack.

Like tombstones, locks and keys incur significant overhead. They add an extra
word of storage to every pointer and to every block in the heap. They increase
the cost of copying one pointer into another. Most significantly, they incur the
cost of comparing locks and keys on every access (or every access that cannot be
proven to be redundant). It is unclear whether the lock and key check is cheaper
or more expensive than the tombstone check. A tombstone check may result in
two cache misses (one for the tombstone and one for the object); a lock and key
check is unlikely to cause more than one. On the other hand, the lock and key
check requires a significantly longer instruction sequence on most machines. To
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Figure 8.18 Locks and keys. A valid pointer contains a key that matches the lock on an object
in the heap. A dangling reference is unlikely to match.

minimize time and space overhead, most compilers do not by default generate
code to check for dangling references.

3CHECK YOUR UNDERSTANDING

61. What are tombstones? What changes do they require in the code to allocate and
deallocate memory, and to assign and dereference pointers?

62. Explain how tombstones can be used to support compaction.

63. What are locks and keys? What changes do they require in the code to allocate
and deallocate memory, and to assign and dereference pointers?

64. Explain why the protection afforded by locks and keys is only probabilistic.

65. Discuss the comparative advantages of tombstones and locks and keys as a
means of catching dangling references.
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8.7 Files and Input/Output

The first two subsections below are devoted to interactive and file-based I/O, re-
spectively. Section C 8.7.3 then considers the common special case of text files.

8.7.1 Interactive I/O

On a modern machine, interactive I/O usually occurs through a graphical user
interface (GUI: ‘‘gooey’’) system, with a mouse, a keyboard, and a bit-mapped
screen that in turn support windows, menus, scrollbars, buttons, sliders, and so
on. GUI characteristics vary significantly among, say, Microsoft Windows, the
Macintosh, and Unix’s X11; the differences are one of the principal reasons it is
difficult to port applications across platforms.

Within a single platform, the facilities of a GUI system usually take the form of
library routines (to create or resize a window, print text, draw a polygon, and so
on). Input events (mouse move, button push, keystroke) may be placed in a queue
that is accessible to the program, or tied to event handler subroutines that are called
by the run-time system when the event occurs. Because the handler is triggered
from outside, its activities must generally be synchronized with those of the main
program, to make sure that both parties see a consistent view of any data shared
between them. We will discuss events further in Section 9.6, and synchronization
in Section 13.3.

A few programming languages—notably Smalltalk—attempt to incorporate a
standard set of GUI mechanisms into the language itself. The Smalltalk design team
was part of the original group at Xerox’s Palo Alto Research Center (PARC) that
invented mouse-and-window based interfaces in the early 1970s. Unfortunately,
while the Smalltalk GUI is successful within the confines of the language, it tends
not to integrate well with the ‘‘look and feel’’ of the host system on which it runs.
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Other languages—Java, for example—provide graphics as a standard library
package. Java’s original GUI facilities (the Abstract Window Toolkit—AWT) had
something of a ‘‘least common denominator’’ look to them. The Java routines and
their interface have evolved significantly over time; the more recent Swing and
JavaFX libraries have ‘‘pluggable’’ look and feel, allowing them to integrate more
easily with (and port more easily among) a variety of window systems.

The ‘‘parallel execution’’ of the program and the human user that characterizes
interactive systems is difficult to capture in a functional programming model.
A functional program that operates in a ‘‘batch’’ mode (taking its input from a
file and writing its output to a file) can be modeled as a function from input to
output. A program that interacts with the user, however, requires a very concrete
notion of program ordering, because later input may depend on earlier output.
If both input and output take the form of an ordered sequence of tokens, then
interactive I/O can be modeled using lazy data structures, a subject we considered
in Section 6.6.2. More general solutions can be based on the notion of monads,
which use a functional notion of sequencing to model side effects. We will consider
these issues again in Sections 11.5 and 11.8.

8.7.2 File-Based I/O

Persistent files are the principal mechanism by which programs that run at different
times communicate with each other. A few language proposals (e.g., Argus [LS83]
and χ [SH92]) allow ordinary variables to persist from one invocation of a program
to the next, and a few experimental operating systems (e.g., Opal [CLFL94] and
Hemlock [GSB+93]) provide persistence for variables outside the language proper.
In addition, some language-specific programming environments, such as those for
Smalltalk and Common Lisp, provide a notion of workspace that includes persistent
named variables. With coming advances in nonvolatile memory technology, such
features may find their way into a larger number of languages. Historically, they
have been more the exception than the rule. For the most part, data that need to
outlive a particular program invocation have needed to reside in files.

Like interactive I/O, files can be incorporated directly into the language, or pro-
vided via library routines. In the latter case, it is still a good idea for the language
designers to suggest a standard library interface, to promote portability of programs
across platforms. The lack of such a standard in Algol 60 is widely credited with im-
peding the language’s widespread use. One of the principal reasons to incorporate
I/O into the language proper is to make use of special syntax. In particular, several
languages, notably Fortran and Pascal, provide built-in I/O facilities in order to
obtain type-safe ‘‘subroutines’’ that take a variable number of parameters, some of
which may be optional.

Depending on the needs of the programmer and the capabilities of the host
operating system, data in files may be represented in binary form, much as it is
in memory, or as text. In a binary file, the number 106610 would be represented
by the 32-bit value 100001010102. In a text file, it would probably be represented
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by the character string "1066". Temporary files are usually kept in binary form
for the sake of speed and convenience. Persistent files are commonly kept in both
forms. Text files are more easily ported across systems: issues of word size, byte
order, alignment, floating-point format, and so on do not arise. Text files also have
the advantage of human readability: they can be manipulated by text editors and
related tools. Unfortunately, text files tend to be large, particularly when used to
hold numeric data. A double-precision floating-point number occupies only eight
bytes in binary form, but can require as many as 24 characters in decimal notation
(not counting any surrounding white space). Text files also incur the cost of binary
to text conversion on output, and text to binary conversion on input. The size
problem can be addressed, at least for archival storage, by using data compression.
Mechanisms to control text/binary conversion tend to be the most complicated
part of I/O; we discuss them in the following subsection.

When I/O is built into a language, files are usually declared using a built-in typeEXAMPLE 8.93
Files as a built-in type constructor, as for example in Pascal:

var my_file : file of foo;

If I/O is provided by library routines, the library usually provides an opaque type
to represent a file. In either case, each file variable is generally bound to an external,EXAMPLE 8.94

The open operation operating system–supported file by means of an open operation. In C, for example,
one says

my_file = fopen(path_name, mode);

The first argument to fopen is a character string that names the file, using the
naming conventions of the host operating system. The second argument is a string
that indicates whether the file should be readable, writable, or both, whether it
should be created if it does not yet exist, and whether it should be overwritten or
appended to if it does exist.

When a program is done with a file, it can break the association between the fileEXAMPLE 8.95
The close operation variable and the external object by using a close operation:

fclose(my_file);

In response to a call to close, the operating system may perform certain ‘‘finalizing’’
operations, such as unlocking an exclusive file (so that it may be used by other
programs), rewinding a tape drive, or forcing the contents of buffers out to disk.

Most files, both binary and text, are stored as a linear sequence of characters,
words, or records. Every open file then has a notion of current position: an implicit
reference to some element of the sequence. Each read or write operation implic-
itly advances this reference by one position, so that successive operations access
successive elements, automatically. In a sequential file, this automatic advance is
the only way to change the current position. Sequential files usually correspond to
media like printers and tapes, in which the current position has a physical repre-
sentation (how many pages we’ve printed; how much tape is on each spool) that is
difficult to change.
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In other, random-access files, the programmer can change the current position
to an arbitrary value by issuing a seek operation. In a few programming languages
(e.g., Cobol and PL/I), random-access files (also called direct files) have no notion
of current position. Rather, they are indexed on some key, and every read or write
operation must specify a key. A file that can be accessed both sequentially and by
key is said to be indexed sequential.

Random-access files usually correspond to media like solid-state flash drives
or magnetic or optical disks, in which the current position can be changed with
relative ease. Where tape drives (still widely used for archival storage) can take
more than a minute to seek to a given position, modern disks take anywhere from
5 to 200 ms, depending on technology. (Note that 5 ms is still a very long time—10
million cycles on a 2 GHz processor.) Seeking on a solid-state device is essentially
instantaneous. A few languages—notably Pascal—provide no random-access files,
though individual implementations may support random access as a nonstandard
language extension.

8.7.3 Text I/O

It is conventional to think of text files as consisting of a sequence of lines, each of
which in turn consists of characters. In older systems, particularly those designed
around the metaphor of punch cards, lines are reflected in the organization of the
file itself. A seek operation, for example, may take a line number as argument.
More commonly, a text file is simply a sequence of characters. Within this sequence,
control (nonprinting) characters indicate the boundaries between lines. Unfor-
tunately, end-of-line conventions are not standardized. In Unix and in modern
versions of the Mac OS, each line of a text file ends with a newline (‘‘control-J’’)
character, ASCII value 10. (On ‘‘classic’’ Macs, each line ended with a carriage
return (‘‘control-M’’) character, ASCII value 13.) On Windows machines, each line
ends with a carriage return/newline pair. Text files are usually sequential.

Despite the muddied conventions for line breaks, text files are much more
portable and readable than binary files.1 Because they do not mirror the structure
of internal data, text files require extensive conversions on input and output. Issues
to be considered include the base for integer values (and the representation of
nondecimal bases); the representation of floating-point values (number of digits,
placement of decimal point, notation for exponent); the representation of enu-
merations and other nonnumeric, nonstring types; and positioning, if any, within
columns (right and left justification, zero or white-space fill, ‘‘floating’’ dollar signs
in Cobol). Some of these issues (e.g., the number of digits in a floating-point

1 We are speaking here, of course, of plain-text ASCII or Unicode files. So-called ‘‘rich text’’ files,
consisting of formatted text in particular fonts, sizes, and colors, perhaps with embedded graphics,
are another matter entirely. Word processors typically represent rich text with a combination of
binary and ASCII data, though ASCII-only standards such as Postscript, textual PDF, RTF, and
XML can be used to enhance portability.
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number) are influenced by the hardware, but most are dictated by the needs of the
application and the preferences of the programmer.

In most languages the programmer can take complete control of input and output
formatting by writing it all explicitly, using language or library mechanisms to read
and write individual characters only. I/O at such a low level is tedious, however,
and most languages also provide more high-level operations. These operations vary
significantly in syntax and in the degree to which they allow the programmer to
specify I/O formats. We illustrate the breadth of possibilities with examples from
four imperative languages: Fortran, Ada, C, and C++.

Text I/O in Fortran

In Fortran, we could write a character string, an integer, and an array of 10 floating-EXAMPLE 8.96
Formatted output in
Fortran

point numbers as follows:

character s*20
integer n
real r (10)
...
write (4, '(A20, I10, 10F8.2)'), s, n, r

In the write statement, the 4 indicates a unit number, which identifies a particular
output file. The quoted, parenthesized expression is called a format; it specifies
how the printed variables are to be represented. In this case, we have requested a
20-column ASCII string, a 10-column integer, and 10 eight-column floating-point
numbers (with two columns of each reserved for the fractional part of the value).
Fortran provides an extremely rich set of these edit descriptors for use inside of
formats. Cobol, PL/I, and Perl provide comparable facilities, though with a very
different syntax.

Fortran allows a format to be specified indirectly, so it may be used in moreEXAMPLE 8.97
Labeled formats than one input or output statement:

write (4, 100), s, n, r ! 100 is the line number
... ! of the format statement
100 format (A20, I10, 10F8.2)

It also allows formats to be created at run time, and stored in strings:

character(len=20) :: fmt
...
fmt = "(A20, I10, 10F8.2)"
...
write (4, fmt), s, n, r

If the programmer does not know, or does not care about, the precise allocation of
columns to fields, the format can be omitted:

write (4, *), s, n, r
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In this case, the run-time system will use default format conventions.
To write to the standard output stream (i.e., the terminal or its surrogate), theEXAMPLE 8.98

Printing to standard output programmer can use the print statement, which resembles a write without a
unit number:

print*, s, n, r ! * means default format

For input, read is used both for standard input and for specific files; in the former
case, the unit number is omitted, together with the extra set of parentheses:

read 100, s, n, r
...
read*, s, n, r ! * means default format

The star may be omitted in Fortran 90.
In the full form of read, write, and print, additional arguments may be

provided in the parenthesized list with the unit number and format. These can be
used to specify a variety of additional information, including a label to which to
jump on end-of-file, a label to which to jump on other errors, a variable into which
to place status codes returned by the operating system, a set of labels (a ‘‘namelist’’)
to attach to the output values, and a control code to override the usual automatic
advance to the next line of the file. Because there are so many of these optional
arguments, most of which are usually omitted, they are usually specified using
named (keyword) parameter notation, a notion we defer to Section 9.3.3.

The variety of shorthand versions of read, write, and print, together with
the fact that they operate on a variable number of program variables, makes it very
difficult to cast them as ‘‘ordinary’’ subroutines. Fortran 90 provides optional and
named parameters, but Fortran 77 does not, and even in Fortran 90 there is no way
to define a subroutine with an arbitrary number of parameters.

Text I/O in Ada

Ada provides a suite of five standard library packages for I/O. The Sequential_
IO and Direct_IO packages are for binary files. They provide generic file types
that can be instantiated for any desired element type. The IO_Exceptions and
Low_Level_IO packages handle error conditions and device control, respectively.
The Text_IO package provides formatted input and output on sequential files of
characters.

Using Text_IO, our original three-variable Fortran output statement wouldEXAMPLE 8.99
Formatted output in Ada look something like this in Ada:

s : array (1..20) of Character;
n : Integer;
r : array (1..10) of Real;
...
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set_output(My_File);
Put(N, 10);
Put(S);
for I in 1..10 loop Put(R(I), 5, 2); end loop;
New_Line;

In the Put of an element of R (within the loop), the second parameter specifies
the number of digits before the decimal point, rather than the width of the entire
number (including the decimal point), as it did in Fortran. The Put of S will use
the string’s natural length. If a different length is desired, the programmer will have
to write blanks or Put a substring explicitly. If precise output positioning is not
desired for the integers and real numbers, the extra parameters in their Put calls
can be omitted; in this case the run-time system will use standard defaults. The
programmer can use additional library routines to change these defaults if desired.
A call to Set_Output invokes a similar mechanism: it changes the default notion
of output file.

There are two overloaded forms of Put for every built-in type. One takes a fileEXAMPLE 8.100
Overloaded Put routines name as its first argument; the other does not. The last five lines above could have

been written

Put(My_File, N, 10);
Put(My_File, S);
for I in 1..10 loop Put(My_File, R(I), 5, 2); end loop;
New_Line(My_File);

The programmer can of course define additional forms of Get and Put for arbitrary
user-defined types. All of these facilities rely on standard Ada mechanisms; in
contrast to Fortran, no support for I/O is built into the language itself.

Text I/O in C

C provides I/O through a library package called stdio; as in Ada, no support
for I/O is built into the language itself. Many C implementations, however, build
knowledge of I/O functions into the compiler, so it can issue warnings when
arguments appear to be used incorrectly.

Our example output statement would look something like this in C:EXAMPLE 8.101
Formatted output in C

char s[20];
int n;
double r[10];
...
fprintf(my_file, "%20s%10d", s, n);
for (i = 0; i < 10; i++) fprintf(my_file, "%8.2f", r[i]);
fprintf(my_file, "\n");

The arguments to fprintf are a file, a format string, and a sequence of expres-
sions. The format string has capabilities similar to the formats of Fortran, though



C 182 Chapter 8 Composite Types

the syntax is very different. In general, a format string consists of a sequence of
characters with embedded ‘‘placeholders,’’ each of which begins with a percent
sign. The placeholder %20s indicates a 20-character string; %d indicates an integer
in decimal notation; %8.2f indicates an 8-character floating-point number, with
two digits to the right of the decimal point.

As in Fortran, formats can be computed and stored in strings, and a single
fprintf statement can print an arbitrary number of expressions. As in Ada, an
explicit for loop is needed to print an array. Commonly the format string alsoEXAMPLE 8.102

Text in format strings contains labeling text and white space:

strcpy(s, "four"); /* copy "four" into s */
n = 20;
char *fmt = "%s score and %d years ago\n";
fprintf(my_file, fmt, s, n);

A percent sign can be printed by doubling it:

fprintf(my_file, "%d%%\n", 25); /* prints "25%" */

Input in C takes a similar form. The fscanf routine takes as argument a file, aEXAMPLE 8.103
Formatted input in C format string, and a sequence of pointers to variables. In the common case, every

argument after the format is a variable name preceded by a ‘‘pointer to’’ operator:

fscanf(my_file, "%s %d %lf", s, &n, &r[0]);

In this call, the %s placeholder will match a string of maximal length that does
not include white space. If this string is longer than 20 characters (the length of
s), then fscanf will write beyond the end of the storage for the string. (This
weakness in scanf is one of the sources of the so-called ‘‘buffer overflow’’ bugs
discussed in Sidebar 8.7. It can be avoided in this example by replacing the %s
specifier with %19s, which will cause fscanf to move at most 19 bytes, plus a
terminating NUL.) The three-character %lf placeholder informs the library routine
that the corresponding argument is a double; the 2-character sequence %f would
read into a float.2 Accidentally using a placeholder for the wrong size variable
is a common error in older implementations of C; forgetting the ampersand on a
trailing argument is another. While such mistakes will often be caught by a modern
C compiler with special-case knowledge of fscanf, they would always be caught in
a language with type-safe I/O. Note that we have read a single element of r; as with
fprintf, a for loop would be needed to read the whole array. Note also that while

2 C’s doubles are double-precision IEEE floating-point numbers in most implementations; floats
are usually single precision. The lack of safety for %s arguments is only one of several problems
with fscanf. Others include the inability to ‘‘skip over’’ erroneous input, and undefined behavior
when there is insufficient input. Instead of fscanf, seasoned C programmers tend to use fgets,
which reads (length-limited) input into a string, followed by manual parsing using strtol (string-
to-long), strtod (string-to-double), and so on.
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we have not made use of this fact in our example, fscanf returns an integer value
indicating the number of &-identified items that were scanned successfully.

We have noted above that the I/O routines of Fortran and Pascal are built into
the language largely to permit them to take a variable number of arguments. We
have also noted that moving I/O into a library in Ada forces us to make a separate
call to put for every output expression. So how do fprintf and fscanf work? It
turns out that C permits functions with a variable number of parameters (we will
discuss such functions in more detail in Section 9.3.3). Unfortunately, the types of
trailing parameters are unspecified, which makes compile-time type checking of
variable-length argument lists impossible in the general case. Moreover, the lack of
run-time type descriptors in C precludes run-time checking as well. At the same
time, because the C library (including fprintf and fscanf) is part of the language
standard, special knowledge of these routines can be built into the compiler—and
often is: while the I/O routines of C are formally defined as ‘‘ordinary’’ functions,
they are typically implemented in the same way as their analogues in Fortran and
Pascal. As a result, C compilers will often provide good error diagnostics when the
arguments to fprintf or fscanf do not match the format string.

To simplify I/O to and from the standard input and output streams, stdio
provides routines called printf and scanf that omit the initial arguments of
fprintf and fscanf. To facilitate the formatting of strings within a program,
stdio also provides routines called sprintf and sscanf, which replace the initial
arguments of fprintf and fscanf with a pointer to an array of characters. The
sscanf function ‘‘reads’’ from this array; sprintf ‘‘writes’’ to it. Fortran 90
provides similar support for intraprogram formatting through so-called internal
files.

Text I/O in C++

As a descendant of C, C++ supports the stdio library described in the previous
subsection. It also supports an I/O library called iostream that exploits the object-
oriented features of the language. The iostream library is more flexible than
stdio, provides arguably more elegant syntax (though this is a matter of taste),
and is completely type safe.

C++ streams use operator overloading to co-opt the << and >> symbols normally
used for bit-wise shifts. The iostream library provides an overloaded version of
<< and >> for each built-in type, and programmers can define versions for new
types. To print a C-style character string in C++, one writesEXAMPLE 8.104

Formatted output in C++
my_stream << s;

To output a string and an integer one can write

my_stream << s << n;

This idiom requires that my_stream be an instance of the ostream (output stream)
class defined in the iostream library. The << operator, with a right operand of type
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T, is then syntactic sugar for either the ‘‘operator function’’ operator<<(ostream,
T) or the ‘‘operator method’’ ostream::operator<<(T), as described in Sec-
tion 3.5.2. As it turns out, iostream provides an operator function for C-style
strings and a member function for integers. Because << associates left-to-right, the
statement above is equivalent to

(operator<<(my_stream, s)).operator<<(n);

The code works because operator<< returns a reference to its first argument as
its result (as we shall see in Section 9.3.1, C++ supports both a value model and a
reference model for variables).

As shown so far, output to an ostream uses default formatting conventions. ToEXAMPLE 8.105
Stream manipulators change conventions, one may embed so-called stream manipulators in a sequence

of << operations. To print n in octal notation (rather than the default decimal), we
could write

my_stream << oct << n;

To control the number of columns occupied by s and n, we could write

my_stream << setw(20) << s << setw(10) << n;

The oct manipulator causes the stream to print all subsequent numeric output in
octal. The setw manipulator causes it to print its next string or numeric output in
a field of a specified minimum width (behavior reverts to the default after a single
output).

The oct manipulator is declared as a function that takes an ostream as a param-
eter and produces a reference to an ostream as its result. Because it is not followed
by empty parentheses, the occurrence of oct in the output sequence above is not a
call to oct; rather, a reference to oct is passed to an overloaded version of << that
expects a manipulator function as its right-hand argument. This version of << then
calls the function, passing the stream (the left-hand argument of <<) as argument.

The setw manipulator is even trickier. It is declared as a function that returns a
reference to what we might call an ‘‘object closure’’—an object containing a refer-
ence to a function and a set of arguments. In this particular case, setw(20) is a
call to a constructor function that returns a closure containing the number 20 and
a pointer to the setw manipulator. (We will discuss constructors in detail in Sec-
tion 10.3, and object closures in Section 3.6.3.) The iostream library provides an
overloaded version of << that expects an object closure as its right-hand argument.
This version of << calls the function inside the closure, passing it as arguments the
stream (the left-hand argument of <<) and the integer inside the closure.

The iostream library provides a wealth of manipulators to change the format-
ting behavior of an ostream. Because C++ inherits C’s handling of pointers andEXAMPLE 8.106

Array output in C++ arrays, however, there is no way for an ostream to know the length of an array. As
a result, our full output example still requires a for loop to print the r array:
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char s[20];
int n;
double r[10];
...
my_stream << setw(20) << s << setw(10) << n;
for (i = 0; i < 10; i++)

my_stream << setiosflags(ios::fixed)
<< setw(8) << setprecision(2) << r[i];

my_stream << "\n";

Here the manipulators in the output sequence in the for loop specify fixed format
(rather than scientific) for floating-point numbers, with a field width of eight,
and two digits past the decimal point. The setiosflags and setprecision
manipulators change the default format of the stream; the changes apply to all
subsequent output.

To avoid calling stream manipulators repeatedly, we could modify our exampleEXAMPLE 8.107
Changing default format as follows:

my_stream.flags(my_stream.flags() | ios::fixed);
my_stream.precision(2);
for (i = 0; i < 10; i++) my_stream << setw(8) << r[i];

To facilitate the restoration of defaults, the flags and precision functions return
the previous value:

ios::fmtflags old_flags = my_stream.flags(my_stream.flags() | ios::fixed);
int old_precision = my_stream.precision(2);
for (i = 0; i < 10; i++) my_stream << setw(8) << r[i];
my_stream.flags(old_flags);
my_stream.precision(old_precision);

Formatted input in C++ is analogous to formatted output. It uses istreams
instead of ostreams, and the >> operator instead of <<. It also supports a suite of
manipulators comparable to those for output. I/O on the standard input and output
streams does not require different functions; the programmer simply begins an
input or output sequence with the standard stream name cin or cout. (In keeping
with C tradition, there is also a standard stream cerr for error messages.) To sup-
port intraprogram formatting of character strings, the strstream library provides
istrstream and ostrstream object classes that are derived from istream and
ostream, and that allow a stream variable to be bound to a string instead of to a
file.
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3CHECK YOUR UNDERSTANDING

66. Explain the differences between interactive and file-based I/O, between tem-
porary and persistent files, and between binary and text files. (Some of this
information is in the main text.)

67. What are the comparative advantages of text and binary files?

68. Describe the end-of-line conventions of Unix, Windows, and Macintosh files.

69. What are the advantages and disadvantages of building I/O into a programming
language, as opposed to providing it through library routines?

70. Summarize the different approaches to text I/O adopted by Fortran, Ada, C,
and C++.

71. Describe some of the weaknesses of C’s scanf mechanism.

72. What are stream manipulators? How are they used in C++?
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8.9 Exercises

8.35 In Example 6.70 we described a programming idiom in which an iterator
takes a ‘‘loop body’’ function as argument, and applies it to every element of a
given container or set. Show how to use this idiom in ML to apply a function
to every element of the tree in Example 11.39. Write versions of your iterator
for preorder, inorder, and postorder traversals.

8.36 Show how unions can be used in C to interpret the bits of a value of one
type as if they represented a value of some other type. Explain why the same
technique does not work in Ada. After consulting an Ada manual, describe
how an unchecked pragma can be used to get around the Ada rules.

8.37 Are variant records a form of polymorphism? Why or why not?
8.38 Learn the details of variant records in Pascal.

(a) You may have noticed that the language does not allow you to pass the
tag field of a variant record to a subroutine by reference. Why not?

(b) Explain how you might implement dynamic semantic checks to catch
references to uninitialized fields of a tagged variant record. Changing
the value of the tag field should cause all fields of the variant part of the
record to become uninitialized. Suppose you want to avoid adding flag
fields within the record itself (e.g., to avoid changing the offsets of fields
in a systems program). How much harder is your task?

(c) Explain how you might implement dynamic semantic checks to catch
references to uninitialized fields of an untagged variant record. Any
assignment to a field of a variant should cause all fields of other variants
to become uninitialized. Any assignment that changes the record from
one variant to another should also cause all other fields of the new variant
to be uninitialized. Again, suppose you want to avoid adding flag fields
within the untagged record itself. How much harder is your task?
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8.39 We noted in Section C 8.1.4 that Ada requires the variant portions of a record
to occur at the end, to save space when a particular record is constrained to
have a comparatively small variant part. Could a compiler rearrange fields to
achieve the same effect, without the restriction on the declaration order of
fields? Why or why not?

8.40 Reference counts can be used to reclaim tombstones,. While it is certainly
possible to create a circular structure with tombstones, the fact that the pro-
grammer is responsible for explicit deallocation of heap objects implies that
reference counts will fail to reclaim tombstones only when the programmer
has failed to reclaim the objects to which they refer. Explain how to leverage
this observation to catch memory leaks at run time. Does your solution work
in all cases? Explain.

8.41 For objects allocated in the heap, we have suggested that a ‘‘lock’’ for dangling
reference detection be allocated in the object header, at a known offset from
the beginning of the object itself. This choice doesn’t work well for pointers
to static or stack-allocated objects, or in general for pointers created with
an ‘‘address of’’ (&) operator, since these may refer to fields in the middle of
larger objects.

Zhou [ZCH23] has suggested solving this problem by adding an extra field
to every pointer, to indicate the offset between the lock and the pointed-to
object. A single lock can then protect an entire stack frame, or all the static
objects in a module.

Elaborate on this suggestion. Specifically, describe the code that must be
executed in subroutine prologues and epilogues—and on pointer assignment
and dereference—in order to detect dangling references in a language that
permits pointers to non-heap objects.

8.42 In Section 8.5.4 we introduced the notion of smart pointers in C++. Learn how
these are implemented, and write an explanation. Discuss the relationship to
tombstones.

8.43 Rewrite Example C 8.103 using fgets, strtol, strtod, etc. (read the man
pages), so that it is guaranteed not to result in buffer overflow.

8.44 The output routines of several languages (e.g., println in Swift) give spe-
cial treatment to ends of lines. By contrast, C’s printf does not; it treats
newlines and carriage returns the same as any other character. What are the
comparative advantages of these approaches? Which do you prefer? Why?
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8.10 Explorations

8.54 Research the history of smart pointers (Section 8.5.4) in C++, including
the unique_ptr, shared_ptr, and weak_ptr of C++11; the auto_ptr of
C++98, and the various pointer classes of the popular Boost library. How
has the standard set of pointers evolved over time? What accounts for the
changes? Do you consider the current mechanisms an adequate replacement
for automatic garbage collection? Why or why not?

8.55 Find a Cobol manual and learn about the language’s facilities for text I/O.
Prepare a written comparison of those facilities to those of the languages
described in Section C 8.7.3.

8.56 If you were designing the text I/O facilities for a new programming language,
what approach would you take? In particular, do you believe that I/O should
be a built-in part of the language, or should it be handled by library routines?
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