EXAMPLE 756

Generic arbiter class in
C++

Type Systems

1.3.5 Generics in C++, Java, and C#

Though templates were not officially added to C++ until 1990, when the language
was almost ten years old, they were envisioned early in its evolution. C# generics,
likewise, were planned from the beginning, though they actually didn’t appear
until the 2.0 release in 2004. By contrast, generics were deliberately omitted from
the original version of Java. They were added to Java 5 (also in 2004) in response
to strong demand from the user community.

C++ Templates

Figure C-7.6 defines a simple generic class in C++ that we have named an arbiter.
The purpose of an arbiter object is to remember the “best instance” it has seen
of some generic parameter class T. We have also defined a generic chooser class
that provides an operator () method, allowing it to be called like a function. The
intent is that the second generic parameter to arbiter should be a subclass of
chooser, though as written the code does not enforce this. Given these definitions
we might write

class case_sensitive : chooser<string> {
public:
bool operator() (const string& a, const string& b) { return a < b; }

};

arbiter<string, case_sensitive> cs_names; // declare new arbiter
cs_names.consider (new string("Apple"));

cs_names.consider (new string("aardvark"));

cout << *cs_names.best() << "\n"; // prints "Apple"

Alternatively, we might define a case_insensitive descendant of chooser,
whereupon we could write

c-141

c-142

Chapter 7 Type Systems

template<typename T>
class chooser {
public:
virtual bool operator() (const T& a, const T& b) = 0;
};

template<typename T, typename C>
class arbiter {
T* best_so_far;
C comp;
public:
arbiter() { best_so_far = nullptr; }
void consider(T* t) {

if (!best_so_far || comp(*t, *best_so_far)) best_so_far = t;
}
T* best() {

return best_so_far;
}

};

Figure 1.6 Generic arbiter in C++.

arbiter<string, case_insensitive> ci_names; // declare new arbiter
ci_names.consider(new string("Apple"));

ci_names.consider (new string("aardvark"));

cout << *ci_names.best() << "\n"; // prints "aardvark"

Either way, the C++ compiler will create a new instance of the arbiter template
every time we declare an object (e.g., cs_names) with a different set of generic
arguments. Only at the point where we attempt to use such an object (e.g., by calling
consider) will it check to see whether the arguments support all the required
operations.

Because type checking is delayed until the point of use, there is nothing magic
about the chooser class. If we neglected to define it, and then left it out of the
header of case_sensitive (and similarly case_insensitive), the code would
still compile and run just fine.

C++ templates are an extremely powerful facility. Template parameters can
include not only types, but also values of ordinary (nongeneric) types, and nested
template instances. Programmers can also define specialized templates that provide
alternative implementations for certain combinations of arguments. These facilities
suffice to implement recursion, giving programmers the ability, at least in principle,
to compute arbitrary functions at compile time (in other words, templates are
Turing complete). An entire branch of software engineering has grown up around
so-called template metaprogramming, in which templates are used to persuade the
C++ compiler to generate custom algorithms for special circumstances [AG05].
As a comparatively simple example, one can write a template that accepts a generic

EXAMPLE 7.57

Template function bodies
moved to a . cc file

7.3.5 Generics in C++, Java, and C# c-143

parameter int n and produces a sorting routine for n-element arrays in which all
of the loops have been completely unrolled.

As described in Section 7.3.4 (“Implicit Instantiation”), C++ allows generic
parameters to be inferred for generic functions, rather than specified explicitly. To
identify the right version of a generic function (from among an arbitrary number of
specializations), and to deduce the corresponding generic arguments, the compiler
must perform a complicated, potentially recursive pattern-matching operation.
This pattern matching is, in fact, quite similar to the type inference of ML-family
languages, described in Section 7.4. It can, as noted in Sidebar 7.8, be cast as
unification.

Unfortunately, per-use instantiation of templates has several significant draw-
backs. First, it requires that the compiler have access to the template’s source code
at the point in the program where instantiation occurs. In the code of Figure C-7.6,
the arbiter class includes complete definitions of its methods. This is entirely
appropriate for small, simple classes, even in a header (.h) file. If the code were
significantly more complex, we might wish to put only the declaration of the generic
class in our header file (call it arbiter.h), and defer the method definitions to a
separate arbiter.cc file:

// arbiter.h:

template<typename T, typename C>
class arbiter {
T* best_so_far;
C comp;
public:
arbiter();
void consider(T* t);
T* best();
};

// arbiter.cc (imagine that these methods were long and complicated):

template<class T, class C>
arbiter<T,C>::arbiter() { best_so_far = nullptr; }

template<class T, class C>
void arbiter<T,C>::consider(T* t) {
if (!best_so_far || comp(*t, *best_so_far)) best_so_far = t;

}

template<class T, class C>
T* arbiter<T,C>::best() { return best_so_far; }

Compilation units that have access to the .h file will still compile successfully, but
now machine code for the arbiter methods will never be instantiated, because no
actual use of an arbiter object appears in the file (arbiter. cc) that contains the
source code. The likely symptom will be “missing symbol” errors from the linker.

c-144 Chapter 7 Type Systems

EXAMPLE 758

extern templates in
C++l11

EXAMPLE 759

Instantiation-time errors in
C++ templates

C++ provides a partial solution to this problem, in the form of explicit instan-
tiation. If we anticipate the need for case-sensitive and case-insensitive string
arbiters, we can define the appropriate chooser classes in arbiter.h, and then
instantiate corresponding arbiter classes in arbiter.cc:

template class arbiter<string, case_sensitive>;
template class arbiter<string, case_insensitive>;

Of course, explicit instantiation works only if the implementor of a template’s
.cc file knows what instantiations will eventually be required. If this cannot

be anticipated, the bodies will need to remain in the .h file, regardless of their
complexity. But then a second problem arises: if the same template is instantiated
with the same arguments in 20 different compilation units, the compiler will end
up compiling the same code 20 times. Most modern linkers are smart enough to
keep only one copy of the machine code for a repeatedly instantiated template, but
we will have wasted not only the cost of repeated scanning and parsing, but of
semantic analysis, optimization, and code generation as well.

C++11 provides a partial solution to this second problem, in the form of extern
template declarations. If the templated class declaration and method definitions of
Example C-7.57 were included in their entirety in arbiter.h, and we then needed
a case-sensitive arbiter in each of 20 . cc files, we could write

extern template class arbiter<string, case_sensitive>;

in all but one of the files, instructing the compiler not to generate machine code
for that arbiter, but rather to assume that an appropriate implementation would
be generated elsewhere (presumably in the 20th file, where the extern keyword
would be omitted), and would thus be available at link time.

Historically, the final and perhaps the most frustrating problem with per-use
instantiation was its tendency to result in inscrutable error messages. Continuing
our running example, if we define

class foo { // line 40 of source
public:
bool operator() (const string& a, const unsigned int b) {

// wrong type for second parameter, from arbiter's point of view
return a.length() < b;

};

and then say
arbiter<string, foo> oops;

oops.consider (new string("Apple")); // line 75 of source

the GNU C++ compiler (version 12.2) will respond with

7.3.5 Generics in C++, Java, and C# c-145

best.cc: In instantiation of ‘void arbiter<T, C>::consider(Tx)

[with T = std::__cxx1l::basic_string<char>; C = foo]’:
best.cc:75:18: required from here
best.cc:28:33: error: no match for call to ‘(foo)
(std::__cxx11l::basic_string<char>&, std::__cxxll::basic_string<char>&)’
28 | if (!best_so_far || comp(*t, *best_so_far)) best_so_far = t;

best.cc:42:10: note: candidate: ‘bool foo::operator() (const std::stringg,
unsigned int)’

42 | bool operator() (const string& a, const unsigned int b) {
| S
best.cc:42:57: note: no known conversion for argument 2
from ‘std::__cxxll::basic_string<char>’ to ‘unsigned int’
42 | bool operator() (const string& a, const unsigned int b) {

LLVM’s clang front end (version 14.0) is only a little more helpful:

best.cc:28:29: error: no matching function for call to object of type 'foo'
if (!best_so_far || comp(*t, *best_so_far)) best_so_far = t;

best.cc:75:10: note: in instantiation of member function
'arbiter<std::string, foo>::consider' requested here
oops.consider(new string("Apple")); // line 75 of source

best.cc:42:10: note: candidate function not viable: no known conversion
from 'std::string' to 'const unsigned int' for 2nd argument
bool operator() (const string& a, const unsigned int b) {

The problem here is fundamental; it’s not poor compiler design. Because the lan-
guage requires that templates be “expanded out” before they are type checked, it is
extraordinarily difficult to generate messages without reflecting that expansion.

To facilitate more helpful messages (and also to increase the expressive power
of template specialization), C++20 introduced the notion of concepts, which allow
the programmer to specify constraints on template parameters—and the compiler
to check those constraints at instantiation time. Dozens of concepts and related
requirements are defined in the standard library, and rich notation is available in
which to define additional concepts.

exameLe 1.60 Perhaps the simplest constraint we might add to our arbiter type insists that
Insisting on a chooser type parameter C be derived from chooser<T>:

template<typename T, typename C>
requires std::derived_from<C, chooser<T>>

class arbiter { ...

With this change in place, clang says

c-146 Chapter 7 Type Systems

best.cc:74:5: error: constraints not satisfied for class template 'arbiter'
[with T = std::string, C = fool
arbiter<string, foo> oops;

best.cc:18:14: note: because 'std::derived_from<foo, chooser<std::string> >'
evaluated to false
requires std::derived_from<C, chooser<T>>

Note that the error message is now associated with the instantiation of arbiter
at line 74, rather than its use at line 75.
But this is overkill. It rules out cases in which we provide a perfectly usable
exameie 1.6 comparator type C that isn’t actually derived from chooser<T>. To allow more
Insisting on a predicate general comparators, we might write

template<typename T, typename C>
requires std::predicate<C, T, T>
class arbiter { ...

Here predicate<C, T, T> requires that C be an invocable object that takes
two parameters of type T and returns a value whose type is (or can be coerced to
be) bool. With this revised constraint, error messages still occur at the point of
instantiation but we are no longer limited to strict descendants of the chooser
type.

Unfortunately, the error message for a failed instantiation of Example C-7.61
(a message we haven’t shown) now fills most of a page, diving into details of the

exampLe 1.6 definition of std: :predicate. To improve this message, we can define a concept
Defining a new named that captures exactly what we need:
concept

template<typename T, typename C>
concept Compares =
requires(C ¢, T a, T b) { {c(a, b)} -> std::convertible_to<bool>; };

template<typename T, typename C>
requires Compares<T, C>
class arbiter { ...

Here we have defined Compares to insist that for any C object ¢ and any T
objects a and b, the expression c(a, b) is well formed and has a value whose type
is (or can be coerced to be) bool. Now our error message is quite nice:

best.cc:74:5: error: constraints not satisfied for class template 'arbiter'
[with T = std::string, C = foo]
arbiter<string, foo> oops;
best.cc:19:14: note: because 'Compares<foo, std::string>' evaluated to false
requires Compares<C, T>

EXAMPLE 763

Generic Arbiter class in
Java

7.3.5 Generics in C++, Java, and C# c-147

best.cc:15:32: note: because 'c(a, b)' would be invalid: no matching
function for call to object of type 'foo'
requires(C c, T a, T b) { {c(a, b)} -> std::convertible_to<bool>; };

Java Generics

Generics were deliberately omitted from the original version of Java. Rather than
instantiate containers with different generic parameter types, Java programmers
followed a convention in which all objects in a container were assumed to be of the
standard base class Object, from which all other classes are descended. Users of
a container could place any type of object inside. When removing an object, an
explicit conversion (what Java calls a cast) could be used to reassert the original
type. No danger was involved, because objects in Java are self-descriptive, and
conversions employ run-time checks.

Though dramatically simpler than the use of templates in C++, this program-
ming convention has three significant drawbacks: (1) users of containers must
litter their code with conversions, which many people find distracting or aes-
thetically distasteful; (2) errors in the use of a container manifest themselves as
ClassCastExceptions at run time, rather than as compile-time error messages;
(3) the error checking of the conversions incurs overhead at run time. Given Java’s
emphasis on clarity of expression, rather than pure performance, problems (1) and
(2) were considered the most serious, and became the subject of a Java Community
Process proposal for a language extension in Java 5. The solution adopted is based
on the GJ (Generic Java) work of Bracha et al. [BOSW98].

Figure C-7.7 contains a Java version of our arbiter class. It differs from the
C++ code of Figure C-7.6 in several important ways. First, Java requires that the
code for each generic class be manifestly (self-obviously) type safe, independent
of any particular instantiation. This means that the type of field comp—and in
particular, the fact that it provides a better method—must be statically declared.
As a result, the Chooser to be used by a given Arbiter instance must be specified
as a constructor parameter; it cannot be a generic parameter. (We could have used
a constructor parameter in C++; in Java it is mandatory.) For both field comp and
constructor parameter ¢, we are then faced with the question: what should be the
generic parameter of Chooser?

The most obvious choice (not the one adopted in Figure C-7.7) would be
Chooser<T>. This would allow us to write

class CaseSensitive implements Chooser<String> {
public boolean better(String a, String b) {
return a.compareTo(b) < 1;

}

c-148 Chapter 7 Type Systems

EXAMPLE 764

Wildcards and bounds on
Java generic parameters

interface Chooser<T> {
public boolean better(T a, T b);

class Arbiter<T> {
T bestSoFar;
Chooser<? super T> comp;

public Arbiter(Chooser<? super T> c) {
comp = c;
}
public void consider(T t) {
if (bestSoFar == null || comp.better(t, bestSoFar)) bestSoFar = t;
}
public T best() {
return bestSoFar;

}
}

Figure 1.1 Generic arbiter in Java.

Arbiter<String> csNames = new Arbiter<String>(new CaseSensitive());
csNames.consider (new String("Apple"));

csNames.consider (new String("aardvark"));
System.out.println(csNames.best()); // prints "Apple"

Suppose, however, we were to define

class CaseInsensitive implements Chooser<Object> { // note type!
public boolean better(Object a, Object b) {
return a.toString().compareToIgnoreCase(b.toString()) < 1;

}

Class Object defines a toString method (usually used for debugging purposes),
so this declaration is valid. Moreover since every String is an Object, we ought
to be able to pass any pair of strings to CaseInsensitive.better and get a
valid response. Unfortunately, Chooser<Object> is not acceptable as a match
for Chooser<String>. If we typed

Arbiter<String> ciNames = new Arbiter<String>(new CaselInsensitive());

the compiler would complain. The fix (as shown in Figure C-7.7) is to declare both
comp and c to be of type <? super T> instead. This informs the Java compiler
that an arbitrary type argument (“?”) is acceptable as the generic parameter of our
Chooser, so long as that type is an ancestor of T.

EXAMPLE 765

Type erasure and implicit
conversions

7.3.5 Generics in C++, Java, and C# c-149

interface Chooser {
public boolean better(Object a, Object b);

class Arbiter {
Object bestSoFar;
Chooser comp;

public Arbiter(Chooser c) {
comp = c;
}
public void consider(Object t) {

if (bestSoFar == null || comp.better(t, bestSoFar)) bestSoFar = t;
}
public Object best() {
return bestSoFar;
}
}

Figure 1.8 Arbiter in Java after type erasure. Conversions will be inserted by the compiler on
calls that return an Object or that expect an Object to support a particular method.

The super keyword specifies a lower bound on a type parameter. It is the sym-
metric opposite of the extends keyword, which we used in Example 7.39 to specify
an upper bound. Together, upper and lower bounds allow us to broaden the set of
types that can be used to instantiate generics. As a general rule, we use extends
T whenever a method returns a T object (on which we need to be able to invoke
T methods); we use super T whenever we expect to pass a T object as a param-
eter, but don’t mind if the receiver is willing to accept something more general.
Given the bounded declarations of Figure C-7.7, our use of CaseInsensitive will
compile and run just fine:

Arbiter<String> ciNames = new Arbiter<String>(new CaselInsensitive());
ciNames.consider (new String("Apple"));

ciNames.consider (new String("aardvark"));
System.out.println(ciNames.best()); // prints "aardvark"

Type Erasure

Generics in Java are defined in terms of type erasure: the compiler effectively deletes
every generic parameter and argument list, replaces every occurrence of a type
parameter with Object, and inserts conversions back to concrete types wherever
objects are returned from generic methods. The erased equivalent of Figure C-7.7
appears in Figure C-7.8. No conversions are required in this portion of the code.
On any use of best, however, the compiler would insert an implicit conversions.
The statement

String winner = csNames.best();

c-150 Chapter 7 Type Systems

will, in effect, be implicitly replaced with
String winner = (String) csNames.best();

Also, in order to match the Chooser<String> interface, our definition of
CaseSensitive (Example C-7.63) will in effect be replaced with

class CaseSensitive implements Chooser {
public boolean better(Object a, Object b) {
return ((String) a).compareTo((String) b) < 1;
¥

The advantage of type erasure over the nongeneric (Object-based) version of
the code is that the programmer doesn’t have to write the conversions. In addition,
the compiler is able to verify in most cases that the erased code will never generate

exampLe 1.60 a ClassCastException at run time. The exceptions occur primarily when, for the
Unchecked warnings in sake of interoperability with preexisting code, the programmer assigns a generic
Java collection into a nongeneric collection:

Arbiter<String> csNames = new Arbiter<String>(new CaseSensitive());
Arbiter alias = csNames; // nongeneric
alias.consider(Integer.value0f(3)); // unsafe

DESIGN & IMPLEMENTATION
1.1 Why erasure?

Erasure in Java has several surprising consequences. For one, we can’t invoke
new T(), where T is a type parameter: the compiler wouldn’t know what kind of
object to create. Similarly, Java’s reflection mechanism, which allows a program
to examine and reason about the concrete type of an object at run time, knows
nothing about generics: csNames.getClass() .toString() returns "class
Arbiter", not "class Arbiter<String>". Why would the Java designers
introduce a mechanism with such significant limitations? The answer is back-
ward compatibility or, more precisely, migration compatibility, which requires
complete interoperability of old and new code.

More so than most previous languages, Java encourages the assembly of
working programs, often on the fly, from components written independently
by many different people in many different organizations. The Java designers
felt it was critical not only that old (nongeneric) programs be able to run with
new (generic) libraries, but also that new (generic) programs be able to run
with old (nongeneric) libraries. In addition, they took the position that the Java
virtual machine, which interprets Java bytecode in the typical implementation,
could not be modified. While one can take issue with these goals, once they are
accepted erasure becomes a natural solution.

EXAMPLE 767

Java generics and built-in
types

EXAMPLE 768

Sharing generic
implementations in C#

EXAMPLE 769

C#t generics and built-in
types

7.3.5 Generics in C++, Java, and C# c-151

The compiler will issue an “unchecked” warning on the third line of this example,
because we have invoked method consider on a “raw” (nongeneric) Arbiter
without explicitly converting the arguments. In this case the warning is clearly
warranted: alias shouldn’t be passed an Integer. Other examples can be quite
a bit more subtle. It should be emphasized that the warning simply indicates the
lack of static checking; any type errors that actually occur will still be caught at run
time.

Note, by the way, that the use of erasure, and the insistence that every instance
of a given generic be able to share the same code, means that type arguments in
Java must all be descended from Object. While Arbiter<Integer> is a perfectly
acceptable type, Arbiter<int> is not.

C# Generics

Though generics were omitted from C# version 1, the language designers al-
ways intended to add them, and the .NET Common Language Infrastructure
(CLI) was designed from the outset to provide appropriate support. As a result,
C# 2.0 was able to employ an implementation based on reification rather than
erasure. Reification creates a different concrete type every time a generic is instan-
tiated with different arguments. Reified types are visible to the reflection library
(csNames.GetType () .ToString() returns "Arbiter™ 1[System.Doublel"),
and it is perfectly acceptable to call new T() if T is a type parameter with a zero-
argument constructor (a constraint to this effect is required). Moreover where the
Java compiler must generate implicit type conversions to satisfy the requirements
of the virtual machine (which knows nothing of generics) and to ensure type-safe
interaction with legacy code (which might pass a parameter or return a result of an
inappropriate type), the C# compiler can be sure that such checks will never be
needed, and can therefore leave them out. The result is faster code.

Of course the C# compiler is free to merge the implementations of any generic
instantiations whose code would be the same. Such sharing is significantly easier
in C# than it is in C++, because implementations typically employ just-in-time
compilation, which delays the generation of machine code until immediately prior
to execution, when it’s clear whether an identical instantiation already exists some-
where else in the program. In particular, MyType<Foo> and MyType<Bar> will
share code whenever Foo and Bar are both classes, because C# employs a reference
model for variables of class type.

Like C++, C# allows generic arguments to be value types (built-ins or structs),
not just classes. We are free to create an object of class MyType<int>; we do not have
to “wrap” it as MyType<Integer>, the way we would in Java. MyType<int> and
MyType<double> would generally not share code, but both would run significantly
faster than MyType<Integer> or MyType<Double>, because they wouldn’t incur
the dynamic memory allocation required to create a wrapper object, the garbage
collection required to reclaim it, or the indirection overhead required to access the
data inside.

Like Java, C# allows only types as generic parameters, and insists that generics
be manifestly type safe, independent of any particular instantiation. It generates

c-152 Chapter 7 Type Systems

EXAMPLE 770

Generic Arbiter class in

C#

EXAMPLE 77'

Contravariance in the
Arbiter interface

interface Chooser<in T> {
bool better(T a, T b);

class Arbiter<T> {
T bestSoFar;
Chooser<T> comp;
bool initialized;

public Arbiter(Chooser<T> c) {
comp = c;
bestSoFar = default(T);
initialized = false;

}

public void Consider(T t) {
if (!initialized || comp.better(t, bestSoFar)) bestSoFar = t;
initialized = true;

}

public T Best() {
return bestSoFar;

}

}

Figure 1.9 Generic arbiter in C#.

reasonable error messages if we try to instantiate a generic with an argument that
doesn’t meet the constraints of the corresponding generic parameter, or if we try,
inside the generic, to invoke a method that the constraints don’t guarantee will be
available.

A C# version of our Arbiter class appears in Figure C-7.9. One small difference
with respect to Figure C-7.7 can be seen in the Arbiter constructor, which must
explicitly initialize field bestSoFar to default (T). We can leave this out in Java
because variables of class type are implicitly initialized to null, and type parameters
in Java are all classes. In C# T might be a built-in or a struct, both of which require
explicit initialization.

A more interesting difference from Figure C-7.7 appears in the definitions of
the Chooser interface, the comp member of class Arbiter, and the c parameter
of the Arbiter constructor. In Java, we used explicit lower bounds (? super T)
on comp and c to indicate that any Chooser<S>, where S is a superclass of T,
would be acceptable. While C# allows us to specify upper bounds in the form
of type constraints (we did so in the sort routine of Example 7.40), it has no
direct equivalent of lower bounds. It does, however, support the related notions
of covariance and contravariance. We have exploited this support in Figure C-7.9,
where it appears not as bounds on the Chooser passed to a newly created Arbiter,
but as an in modifier on the generic parameter of the Chooser interface itself.

The declaration interface Chooser<in T> indicates that objects of class T
will be used only as input parameters to methods of the interface. Suppose now

EXAMPLE 772

Covariance

EXAMPLE 773

Chooser as a delegate

7.3.5 Generics in C++, Java, and C# c-153

that S is a superclass of T. Since T provides all the methods of S, any method that
expects an input of class S will also accept an input of class T. This means that
in any context in which all we do is provide T objects as inputs to a Chooser, we
can use a “less choosy” Chooser that merely expects S inputs. In other words,
Chooser<T> is a superclass of Chooser<S>. Represented graphically,

T — S = Chooser<S> — Chooser<T>

where the — symbol, pronounced “is a,” indicates that the item on the left inherits
from the item on the right. Chooser<T> is said to be “contravariant in T” because
the relationship between S and T is reversed when wrapping them ina Chooser.

In other situations, objects of a generic type may only be produced by the methods
of an interface. Consider, for example, the notion of an iterator, as provided by C#’s
IEnumerator<T> interface. Method Current of this interface returns an object
of class T; no method takes a T object as input. In the C# standard library, the
interface is declared as

public interface IEnumerator<out T> ...

Now suppose again that S is a superclass of T. In any context in which all we do is
extract S objects from an IEnumerator, we can use a more specific IEnumerator
that gives us T objects instead. In other words, IEnumerator<S> is a superclass of
IEnumerator<T>. Graphically,

T — S = IEnumerator<T> — IEnumerator<S>

Here IEnumerator<T> is said to be “covariant in T” because the relationship
between S and T is preserved when wrapping them in an IEnumerator. In many
interfaces, of course, generic parameters appear as both inputs and outputs of
methods. For such an interface Foo, there is no subclassing relationship: Foo<T>
is said to be “invariant in T.”

Returning to the Arbiter example, there is actually a simpler way to write
our code in C#. Because the Chooser interface has only a single method, we can
express it as a delegate instead:

delegate bool Chooser<T>(T a, T b);

Then in method Arbiter.Consider, we can call the delegate directly as comp (t,
bestSoFar). Our new Chooser is roughly analogous to the C declaration

typedef _Bool (*Chooser)(T a, T b);

(pointer to function of two T arguments, returning a Boolean), except that a C#
Chooser object is a closure, not a pointer: it can refer to a static function, a method
of a particular object (in which case it has access to the object’s fields), or an
anonymous nested function (in which case it has access, with unlimited extent, to
variables in the surrounding scope). In our particular case, defining Chooser to be
a delegate allows us to pass any appropriate function to the Arbiter constructor,
without regard to the class inheritance hierarchy. We can declare

c-154

Chapter 7 Type Systems

static bool CaseSensitive(String a, String b) {

return String.CompareOrdinal(a, b) < 1;

// use Unicode order, in which upper-case letters come first
}
static bool Caselnsensitive(Object a, Object b) {

return String.Compare(a.ToString(), b.ToString(), false) < 1;
}

and then say

Arbiter<String> csNames =
new Arbiter<String>(new Chooser<String>(CaseSensitive));
csNames.Consider ("Apple") ;
csNames.Consider ("aardvark") ;
Console.WriteLine(csNames.Best()); // prints "Apple"

Arbiter<String> ciNames =
new Arbiter<String>(new Chooser<String>(CaseInsensitive));
ciNames.Consider ("Apple");
ciNames.Consider ("aardvark");
Console.WriteLine(ciNames.Best()); // prints "aardvark"

The compiler is perfectly happy to instantiate CaseInsensitive as a Chooser
<String>, because Strings can be passed as Objects.

‘/CHECK YOUR UNDERSTANDING

48.

49.

50.
51.

52.
53.

54.
55.

56.

Why was it difficult, historically, to produce high-quality error messages for
misuses of C++ templates? How do the concepts of C++20 address this problem?

What is the purpose of explicit instantiation in C++? What is the purpose of
extern templates?

What is template metaprogramming?

Explain the difference between upper bounds and lower bounds in Java type
constraints. Which of these does C# support?

What is type erasure? Why is it used in Java?

Under what circumstances will a Java compiler issue an “unchecked” generic
warning?

Why must fields of generic parameter type be explicitly initialized in C#?

For what two main reasons are C# generics often more efficient than comparable
code in Java?

Summarize the notions of covariance and contravariance in generic types.

7.3.5 Generics in C++, Java, and C# c-155

51. How does a C# delegate differ from an interface with a single method (e.g., the
C++ chooser of Figure C-7.6)? How does it differ from a function pointer
in C?

1.21

1.28

1.29

130

Type Systems

Exercises

C++ has no direct analogue of the extends X and super X clauses of Java.
Why not?

Write a simple abstract ordered_set<T> class (an interface) whose meth-
ods include void insert(T val), void remove (T val), bool lookup
(T val), and bool is_empty (), together with a language-appropriate iter-
ator, as described in Section 6.5.3. Using this abstract class as a base, build
a simple list_set class that uses a sorted linked list internally. Try this
exercise in C++, Java, and C#. Note that you will need constraints on T in
Java and C#. You may also want them in C++. Discuss the differences among
your implementations.

Building on the previous exercise, implement higher-level union<T>,
intersection<T>, and difference<T> functions that operate on ordered
sets. Note that these should not be members of the ordered_set<T> class,
but rather stand-alone functions: they should be independent of the details of
list_set or any other particular ordered_set. So, for example, union (4,
B, C) should verify that A is empty, and then add to it all the elements
found in B or C. Explain, for each of C++, Java, and C#, how to handle the
comparison of elements.

Continuing Example C-7.63, the call

csNames.consider(null);
will generate a run-time exception, because String.compareTo is not de-
signed to take null arguments.

(a) Modify Figure C-7.7 to guard against this possibility by including a pred-
icate public Boolean valid(T a); in the Chooser<T> interface, and
by modifying consider to make an appropriate call to this predicate.
Modify class CaseSensitive accordingly.

c-157

c-158

Chapter 7 Type Systems

(b)

131 ()

(b)

Suggest how to make similar modifications to the C# Arbiter of Fig-
ure C-7.9 and Example C-7.70. How should you handle lower bounds
when you need both Better and Valid?

Modify your solution to Exercise 7.15 so that the comparison routine is an
explicit generic parameter, reminiscent of the chooser of Figure C-7.6.

Give an alternative solution in which the comparison routine is an extra
parameter to sort.

132 Consider the C++ program shown in Figure C-7.10. Explain why the final
call to first_n generates a compile-time error, but the call to 1ast_n does
not. (Note that first_n is generic but last_n is not.) Show how to modify
the final call to first_n so that the compiler will accept it.

133 Consider the following code in C++:

template <typename T>
class cloneable_list : public 1list<T> {
public:
cloneable_list<T>* clone() {
auto rtn = new cloneable_list<T>();
for (auto e : *this) {
rtn->push_back(e);
}

return rtn;

};

cloneable_list<foo> L;

cloneable_list<foo>* Lp = L.clone();

Here *Lp will be a “deep copy” of L, containing a copy of each foo object.
Try to write equivalent code in Java. What goes wrong? How might you get
around the problem?

7.7 Exercises

#include <iostream>
#include <list>
using std::cout;
using std::list;

template<typename T> void first_n(list<T> p, int n) {
for (typename list<T>::iterator 1li = p.begin(); 1li != p.end(); li++) {
if (n-- <= 0) break;
cout << *1i << " ",
}

cout << "\n";

void last_n(list<int> p, int n) {
for (list<int>::reverse_iterator 1li = p.rbegin(); 1i != p.rend(); li++) {
if (n-- <= 0) break;
cout << *1ji << " ",
}

cout << "\n";

class int_list_box {
list<int> content;
public:
int_list_box(list<int> 1) { content = 1; }
operator list<int>() { return content; }
// user-supplied operator for coercion/conversion

};

int main() {
int i = 5;
list<int> 1;

for (int i = 0; i < 10; i++) 1.push_back(i);
int_list_box b(l);

first_n(1, i); // works
last_n(b, 1i); // works (coerces b)
first_n(b, i); // static semantic error

}

Figure 1.10 Coercion and generics in C++. The compiler refuses to accept the final call to first_n.

c-159

Type Systems

Explorations

144 Learn more about concepts in C++, together with the earlier notions of named

1.45

146

requirements and the “substitution failure is not an error” (SFINAE) idiom.

Compare and contrast concepts with the constraint mechanisms of Java and
C#.

Explore the support for generics in Scala, Eiffel, Ada, or some other program-
ming language. Compare this support to that of C++, Java, and C#. What
might account for the differences? Which approach(es) do you prefer? Why?

Explore more fully the concepts of covariance and contravariance in object-
oriented languages, as exemplified by the in and out modifiers for generic
parameters in C# 4.0. Discuss the connection between these concepts and
the notions of upper and lower bounds on generic parameters (? extends T
and ? super T in Java).

c-l161

