
6Control Flow

6.7 Nondeterminacy

In Algol 68, the lack of ordering among expression operands was explicitly defined
as an example of nondeterminacy, which the language designers called collateral
execution. Several other built-in constructs in Algol 68 were nondeterministic
as well, and an explicit collateral statement allowed the programmer to specify
nondeterminacy in the evaluation of arbitrary expressions when desired.

Among his many contributions to the art of programming, Dijkstra [Dij75]
advocated the use of nondeterminacy for selection and logically controlled loops.
His guarded command notation has been adopted by several languages. One of
these is SR, a pedagogical language of the 1980s, which we will mention again
in Chapter 13. Imagine for a moment that we are writing a function to returnEXAMPLE 6.89

Avoiding asymmetry with
nondeterminism

the maximum of two integers. In C, we would probably employ a code fragment
something like this:

if (a > b) max = a;
else max = b;

Of course, we could also write

if (a >= b) max = a;
else max = b;

These fragments differ in their behavior when a = b: the first sets max = b; the
second sets max = a. As a practical matter the difference is irrelevant, since a and
b are equal, but it is in some sense aesthetically unpleasant to have to make an
arbitrary choice between the two. More important, the arbitrariness of the choice
makes it more difficult to reason about the code formally, or to prove it is correct.
In a language with guarded commands (the example here is in SR), one could writeEXAMPLE 6.90

Selection with guarded
commands

the following:

if a >= b -> max := a
[] b >= a -> max := b
fi

C 131

C 132 Chapter 6 Control Flow

The general form of this construct is

if condition -> stmt_list
[] condition -> stmt_list
[] condition -> stmt_list
...
fi

Each of the conditions in this construct is known as a guard. The guard and its
following statement, together, are called a guarded command. When control reaches
an if statement in a language with guarded commands, a nondeterministic choice
is made among the guards that evaluate to true, and the statement list following
the chosen guard is executed. In SR, the final condition may optionally be else. If
none of the conditions evaluates to true, the statement list following the else, if
any, is executed. If there is no else, the if statement as a whole has no effect. (In
Dijkstra’s original proposal, there was no else guard option, and it was a dynamic
semantic error for none of the guards to be true.) Interestingly, SR provides no
separate case construct: the SR compiler detects when the conditions of an if
statement test the same expression against a nonoverlapping set of compile-time
constants, and generates table-lookup code as appropriate.

SR uses guarded commands for several purposes in addition to selection. ItsEXAMPLE 6.91
Looping with guarded
commands

logically controlled looping construct (again patterned on Dijkstra’s proposal)
looks very much like the if statement:

do condition -> stmt_list
[] condition -> stmt_list
[] condition -> stmt_list
...
od

For each iteration of the loop, a nondeterministic choice is made among the guards
that evaluate to true, and the statement list following the chosen one is executed.
The loop terminates when none of the guards is true (there is no else guard option
for loops). Using this notation, we can write Euclid’s greatest common divisor
algorithm as follows:

do a > b -> a := a - b
[] b > a -> b := b - a
od
gcd := a

Nondeterministic Concurrency

While nondeterministic constructs have a certain appeal from an aesthetic and
formal semantics point of view, their most compelling advantages arise in concur-
rent programs, for which they can affect correctness. Imagine, for example, that weEXAMPLE 6.92

Nondeterministic message
receipt

are writing a simple dictionary program to support computer-aided design on a

6.7 Nondeterminacy C 133

process client:
loop

toss coin
if heads, send read request to server

wait for response
if tails, send write request to server

wait for response

process server:
loop

receive read request
reply with data

OR
receive write request
update data and reply

Figure 6.7 Example of a concurrent program that requires nondeterminacy. The server must
be able to accept either a read or a write request, whichever is available at the moment. If it
insists on receiving them in any particular order, deadlock may result.

network of personal computers. The dictionary keeps a mapping from part names
to their specifications. A dictionary server process handles requests from clients on
other workstations on the network. Each request may be either a read (return me
the current specification for part X) or a write (define part Y as follows).1 Clients
send requests at unpredictable times. As a result, the server cannot tell at any given
time whether it should try to receive a read or a write request. If it makes the wrong
choice the entire system may deadlock (see Figure C 6.7).

Most message-based concurrent languages provide at least one mechanism to
specify nondeterministic choice among potential communication partners. These
mechanisms do not all look like guarded commands, but they have similar seman-
tics. In SR, one could write our dictionary server as follows:EXAMPLE 6.93

Nondeterministic server in
SR # declarations of request types:

op read_data(n : name) returns d : description
op write_data(n : name; d : description)
local subroutines:
proc lookup ... # find info in dictionary
proc update ... # change info in dictionary

1 This is of course an oversimplified example. Among other things, any real system of this sort
would need a mechanism to lock parts in the dictionary, so that no two clients would ever end up
designing new specifications for the same part concurrently.

C 134 Chapter 6 Control Flow

code for server:
process server

do true -> # loop forever
in read_data(n) returns d -> d := lookup(n)
[] write_data(n, d) -> update(n, d)
ni

od
end

Here in is a nondeterministic construct whose guards can contain communication
statements. The guard write_data(n, d) will evaluate to true if and only if some
client is attempting to send a request containing a new specification for a part.
We shall see in Section C 13.5.3 that more elaborate guards can allow a server to
constrain the types of requests that it is willing to receive at a given point in time,
or even to ‘‘peek’’ inside a message to see if it is acceptable. If none of the guards of
an in statement is true, the server waits until one is.

Choosing among Guards

What happens if two or more guards evaluate to true? How does the language
implementation choose among them? We have glossed over this issue so far. TheEXAMPLE 6.94

Naive (unfair)
implementation of
nondeterminism

most naive implementation would treat a guarded command construct like a
conventional if. . . then . . . else:

server:
loop

if read_data request available
. . .

elsif write_data request available
. . .

else wait until some request is available

The problem with this implementation is that it always favors one type of request
over another; if read_data requests are always available, write_data requests
will never be received.

A slightly more sophisticated implementation would maintain a circular list ofEXAMPLE 6.95
‘‘Gotcha’’ in round-robin
implementation of
nondeterminism

the guards in each set of guarded commands. Each time it encounters the construct
in which these commands appear, it would check guards beginning with the one
after the one that succeeded last time. This technique works well in many cases,
but can fail consistently in others. In the following, for example (again in SR), the
guard of the first in statement combines a communication test with a Boolean
condition:

6.7 Nondeterminacy C 135

process silly
var count : int := 0

do true ->
in A() st count % 2 = 1 -> ...
[] B() -> ...
[] C() -> ...
ni
count++

od

This example is somewhat contrived, but illustrates the problem. The st (‘‘such
that’’) clause in the first guard indicates that it can be chosen only on odd iterations
of the loop. Now imagine that A, B, and C requests are always available. If we
always check guards starting with the one after the one that succeeded last time
(beginning at first with the initial guard), then B will be chosen in the first iteration
(because count mod 2 ̸= 1), C will be chosen in the second iteration (when count
= 2), B will be chosen again in the third iteration (because again count mod 2 ̸=
1), and so forth. A will never be chosen. The lesson to be learned from this example
is that no deterministic algorithm will provide a truly satisfactory implementation
of a nondeterministic construct (see Sidebar C 6.10).

One final issue has to do with side effects. Guarded command constructs make
a nondeterministic choice among the guards that evaluate to true. They do not,
however, guarantee that all guards will be evaluated before the choice is made;
the implementation is free to ignore the rest of the guards once it has chosen one
that is true. A program may therefore produce unexpected or even unpredictable

DESIGN & IMPLEMENTATION

6.10 Nondeterminacy and fairness
Ideally, what we should like in a nondeterministic construct is a guarantee of
fairness. This turns out to be trickier than one might expect: there are several
plausible ways that ‘‘fair’’ might be defined. Certainly we should like to guarantee
that no guard that is always true is always skipped. Probably, we should like to
guarantee that no guard that is true infinitely often (in a hypothetical infinite
sequence of iterations) is always skipped. Better, we might ask that any guard that
is true infinitely often be chosen infinitely often. This stronger notion of fairness
will obtain if the choice among true guards is genuinely random. Unfortunately,
good pseudorandom number generators are expensive enough that we may not
want to use them to choose among guards. As a result, most implementations of
guarded commands are not provably fair. Many simply employ the circular list
technique. Others use somewhat ‘‘more random’’ heuristics. Many machines,
for example, provide a fast-running clock register that can be read efficiently in
user-level code. A reasonable ‘‘random’’ choice of the guard to evaluate first can
be made by interpreting this clock as an integer, and computing its remainder
modulo the number of guards.

C 136 Chapter 6 Control Flow

results if any of the guards have side effects. This problem is the programmer’s
responsibility in SR. An alternative would have been to prohibit side effects and
have the compiler verify their absence.

3CHECK YOUR UNDERSTANDING

45. What is a guarded command?

46. Explain why nondeterminacy is particularly important for concurrent pro-
grams.

47. Give three alternative definitions of fairness in the context of nondeterminacy.

48. Describe three possible ways of implementing the choice among guards that
evaluate to true. What are the tradeoffs among these?

6Control Flow

6.9 Exercises

6.38 Explain why the following guarded commands in SR are not equivalent:

if a < b -> c := a if a < b -> c := a
[] b < c -> c := b [] b < c -> c := b
[] else -> c := d [] true -> c := d
fi fi

6.39 The astute reader may have noticed that the final line of the code in Exam-
ple C 6.91 embodies an arbitrary choice. It could just as easily have said
gcd := b. Show how to use a guarded command to restore the symmetry of
the program.

6.40 Write, in SR or pseudocode, a function that returns
(a) an arbitrary nonzero element of a given array
(b) an arbitrary permutation of a given array
In each case, write your code in such a way that if the implementation of
nondeterminism were truly random, all correct answers would be equally
likely.

C 137

6Control Flow

6.10 Explorations

6.48 Learn about the select routine in the Unix (POSIX) library. How does it deal
with the need for nondeterministic receipt from multiple communication
partners? How would you use this routine to achieve the effect of the SR code
in Example C 6.93?

6.49 Explain how to use threads in Java to achieve the effect of Example C 6.93.

C 139

