Target Machine Architecture

Processor implementations change over time, as people invent better ways
of doing things, and as technological advances (e.g., increases in the number of
transistors that will fit on one chip) make things feasible that were not feasible before.
Processor architectures also change, for at least two reasons. Some technological
advances can be exploited only by changing the hardware/software interface—for
example by increasing the number of bits that can be added or multiplied in a single
instruction. In addition, experience with compilers and applications sometimes
suggests that certain new instructions would make programs simpler or faster.

Occasionally, technological and intellectual trends converge to produce a revolu-
tionary change in both architecture and implementation. We will discuss four such
changes in Section C-5.4: the development of microprogramming in the early 1960s,
the development of the microprocessor in the early to mid-1970s, the development
of reduced instruction set computing (RISC) in the early 1980s, and the move to
multithreaded and multicore processors in the first decade of the 21st century. A
fifth major change has occurred with the proliferation of general-purpose graphical
processing units (GPUs) and other accelerators; these are beyond the scope of this
text.

This chapter provides a quick overview of those aspects of computer architecture
most essential to the task of compiler construction. In Sections C-5.1-C-5.3 we
consider the hierarchical organization of memory, the types (formats) of data found
in memory, and the instructions used to manipulate those data. The coverage is
necessarily somewhat cursory and high-level; much more detail can be found in
books on computer architecture or organization (e.g., Chapters 2-5 of Patterson
and Hennessy’s outstanding text [PH20]).!

I John L. Hennessey (1952-) and David A. Patterson (1947-) are primarily known for work in
computer architecture, but have also made important contributions to programming languages
and implementation techniques. Hennessey is currently Chairman of Alphabet, Inc. (the parent
company of Google) and was previously President of Stanford University. Patterson is a Professor
at the University of California, Berkeley; he also served as President of the Association for Com-
puting Machinery (ACM) from 2004-2006. Among many other accomplishments, Hennessey
and Patterson pioneered the design of reduced instruction set computers (RISC), for which they
shared the ACM Turing Award in 2017.

c-85

c-86 Chapter 5 Target Machine Architecture

EXAMPLE SI

Memory hierarchy stats

Typical access time Typical capacity
Registers 0.2-0.4 ns 0.5-3 K bytes
Primary (L1) cache 0.4-1ns 32 K-256 K bytes
last-level (typically L3) cache 4-40ns 1-32 M bytes
Main memory 80-250 ns 1 G byte to 1 T byte
Flash (SSD) 10-40 ps 120 G bytes to 16 T bytes
Disk (HDD) 3-10ms 1-16 T bytes
Tape 1-50s up to 30 T bytes per cartridge

Figure 5.1 The memory hierarchy of a workstation-class computer. Access times and capacities
are approximate, based on 2023 technology. Registers are accessed within a single clock cycle;
primary cache takes 2 to 4 cycles. Main memory typically resides on the far side of a bus or
other communication channel and is consequently slower: Flash times vary with manufacturing
technology, and are longer for writes than reads. Disk and tape times are constrained by the
movement of physical parts.

We consider the interplay between architecture and implementation in Sec-
tion C-5.4. As illustrative examples, we consider the widely used x86 and Arm
instruction sets. Finally, in Section C-5.5, we consider some of the issues that make
compiling for modern processors a challenging task.

The Memory Hierarchy

Memory on most machines consists of a numbered sequence of 8-bit bytes. The
size of the sequence—the number of distinct locations—is limited by the number
of bits used to represent an address. This is a sufficiently important number that it
is often used to categorize machines. Programs on a “32-bit machine” can address
no more than 2% bytes (4 GB) of memory. Programs on a “64-bit machine” can
(at least in principle) address 4 billion times as much.

It is not uncommon for modern workstations to contain tens of gigabytes of
memory—much too much to fit on the same chip as the processor. The time it takes
to reach memory depends on its distance from the processor. Off-chip memory—
particularly when located on the other side of an interconnection network shared
by other processors and devices—is particularly slow. Most computers therefore
employ a memory hierarchy, in which things that are used more often are kept close
at hand. A typical memory hierarchy, with access times and capacities, is shown in
Figure C-5.1.

Only three of the levels of the memory hierarchy—registers, memory, and
devices—are a visible part of the hardware/software interface. Compilers manage
registers explicitly, loading them from memory when needed and storing them
back to memory when done, or when the registers are needed for something else.
Caches are managed by the hardware. Devices are generally accessed only by the
operating system.

5.1 The Memory Hierarchy c-87

Registers hold small amounts of data that can be accessed very quickly. A typical
modern machine has two sets of registers—one to hold integer operands, the other
floating-point. Additional sets may be used for special purposes—for example,
vector instructions, which operate, in parallel, on a sequence of shorter values
packed into a longer register. There are usually several special-purpose registers
as well, including the program counter (PC) and the processor status register. The
program counter holds the address of the next instruction to be executed. It is
incremented automatically when fetching most instructions; branches work by
changing it explicitly. The processor status register contains a variety of bits of
importance to the operating system (privilege level, interrupt priority level, trap
enable bits) and, on some machines, a few bits of importance to the compiler writer.
Principal among these are condition codes, which indicate whether the most recent
arithmetic or logical operation resulted in a zero, a negative value, and/or arithmetic
overflow. (We will consider condition codes in more detail in Section C-5.3.2.)

Because registers can be accessed every cycle, while memory, generally, cannot,
good compilers expend a great deal of effort trying to make sure that the data
they need most often are in registers, and trying to minimize the amount of time
spent moving data back and forth between registers and memory. We will consider
algorithms for register management in Section C-5.5.2.

Caches are generally smaller but faster than main memory. They are designed
to exploit locality: the tendency of most computer programs to access the same or
nearby locations in memory repeatedly. By automatically moving the contents of
these locations into cache, a hierarchical memory system can dramatically improve
performance. The idea makes intuitive sense: loops tend to access the same local
variables in every iteration, and to walk sequentially through arrays. Instructions,
likewise, tend to be loaded from consecutive locations, and code that accesses one
element of a structure (or member of a class) is likely to access another.

Cache architecture varies quite a bit across machines. Primary caches, also
known as level-1 (L1) caches, are invariably located on the same chip as the processor,
and usually come in pairs: one for instructions (the L1 I-cache) and another for
data (the L1 D-cache), both of which can be accessed every cycle. Secondary (L2)
and tertiary (L3) caches are larger and slower, but still faster than main memory.

DESIGN & IMPLEMENTATION

5.2 The processor/memory gap

For roughly 50 years, from the 1950s until about 2004, processor speed increased
much faster than memory speed. As a result, the number of processor cycles
required to access memory grew dramatically, and caches became increasingly
critical to performance. To improve the effectiveness of caching, programmers
need to choose algorithms whose data access patterns have a high degree of
locality. High-quality compilers, likewise, need to consider locality of access
when choosing among the many possible translations of a given program.

c-88 Chapter 5 Target Machine Architecture

EXAMPLE D.2
Big- and little-endian

In a modern desktop or laptop system they are typically also on the same chip as
the processor.

Most processors today have more than one processing core on a single chip.
L1 caches are almost always private to a single core. L2 caches may be private or
shared by 2-4 cores. L3 caches are generally shared by all cores on a chip. Caches
are managed entirely in hardware on most machines, but compilers can increase
their effectiveness by generating code with a high degree of locality.

A memory access that finds its data in the cache is said to be a cache hit. An
access that does not find its data in the cache is said to be a cache miss. On a miss,
the hardware automatically loads a line of the cache with a contiguous block of
data containing the requested location, obtained from the next lower level of cache
or main memory. Cache lines vary from as few as 16 to as many as 512 bytes in
length. Assuming that the cache was already full, the load will displace some other
line, which is written back to memory if it has been modified.

A final characteristic of memory that is important to the compiler is known as
data alignment. Most machines are able to manipulate operands of several sizes—
typically one, two, four, or eight bytes. Most modern instruction sets refer to these
as byte, half-word, word, and double-word operands, respectively; on the x86 they
are byte, word, double-word, and quad-word operands. Many recent architectures
require n-byte operands to appear in memory at addresses that are evenly divisible
by n (at least for n < 4). A 4-byte integer, for example, must typically appear at
a location whose address is evenly divisible by four. This restriction occurs for
two reasons. First, buses are designed in such a way that data are delivered to the
processor over bit-parallel, aligned communication paths. Loading an integer from
an odd address would require that the bits be shifted, adding logic (and time) to
the load path. The x86 and Arm, which allow most operands to appear at arbitrary
addresses, run faster if those operands are properly aligned. Second, on machines
with fixed-size instructions, there are generally not enough bits to specify both
an operation (e.g., load) and a full address. As we shall see in Section C-5.3.1,
it is typical to specify an address in terms of an offset from some base location
specified by a register. Requiring that integers be word-aligned allows the offset to
be specified in words, rather than in bytes, quadrupling the amount of memory
that can be accessed using offsets from a given base register.

Data Representation

Data in the memory of most computers are untyped: bits are simply bits. Operations
are typed, in the sense that different operations interpret the bits in memory in
different ways. Typical data formats include instructions, addresses, binary integers
of various lengths, floating-point (real) numbers of various lengths, and characters.

Integers typically come in half-word, word, and double-word lengths. Float-
ing-point numbers typically come in word and double-word lengths, commonly
referred to as single- and double-precision. Some machines store the least-significant

5.2 Data Representation c-89

Big-endian
432 436
| 00| 00| 00| 37]12]34]s56]78

(@)

Little-endian Increasing addresses

432 436 >
| 37| 00| 00| 00| 78| 5634|012
Big-endian Little-endian
432 00| 00| 00 | 37 |435 4351 00| 00O | OO0 | 37 [432
436| 12| 34| 56 | 78 |439 439| 12| 34| 56 | 78 |436
(b)
Increasing addresses Increasing addresses

Figure 5.1 Big-endian and little-endian byte orderings. (a) Two 4-byte quantities, the numbers
3716 and 123456 786, stored at addresses 432 and 436, respectively. (b) The same situation,
with memory visualized as a byte-addressable array of words.

byte of a multiword datum at the address of the datum itself, with bytes of increasing
numeric significance at higher-numbered addresses. Other machines store the
bytes in the opposite order. The first option is called little-endian; the second is
called big-endian. In either case, an n-byte datum stored at address ¢ occupies
bytes ¢ through ¢ 4 #n — 1. The advantage of a little-endian organization is that it is
tolerant of variations in operand size. If the value 37 is stored as a word and then a
byte is read from the same location, the value 37 will be returned. On a big-endian
machine, the value 0 will be returned (the upper eight bits of the number 37, when
stored in 32 bits). The problem with the little-endian approach is that it seems
to scramble the bytes of integers, when read from left to right (see Figure C-5.2a).
Little-endian-ness makes a bit more sense if one thinks of memory as a (byte-
addressable) array of words (Figure C-5.2b). The x86 is little-endian. IBM’s z Series
(mainframe) machines are big-endian. Most other common processors, including
the Arm, MIPS, Power, and RISC-V families, can run in either mode, at the choice
of the operating system.

Support for characters varies widely. A few machines can perform arbitrary
arithmetic and logical operations on 1-byte quantities. Most can load and store
bytes from or to memory, but operate only on longer quantities in registers. Some
legacy machines, including the x86, provide instructions that perform operations
on strings of characters, such as copying, comparing, or searching. On more

c-90 Chapter 5 Target Machine Architecture

EXAMPLE 53

Hexadecimal numbers

0000 O 1000 8
0001 1 1001 9
0010 2 1010 a
0011 3 1011 b
0100 4 1100 ¢
0101 5 1101 d
0110 6 1110 e
0111 7 1111 f

Figure 5.3 The hexadecimal digits.

modern machines (again including the x86), vector instructions can also be used
to operate on strings.

5.2.1 Integer Arithmetic

Binary integers are almost universally represented in two related formats: straight-
forward binary place-value for unsigned numbers, and two’s complement for signed
numbers. An #n-bit unsigned integer has a value in the range 0...2"—1, in-
clusive. An n-bit two’s complement integer has a value in the range —2" "' ...
2"=! — 1, inclusive. Most instruction sets provide two forms of most of the arith-
metic operators: one for unsigned numbers and one for signed numbers. Even for
languages in which integers are always signed, unsigned arithmetic is important
for the manipulation of addresses (e.g., pointers).

An n-bit unsigned integer with binary representation b,_1 b,_, ... by by by
has the value)., b;2". Because the bit pattern corresponding to a given dec-
imal value is non-obvious, and because bit patterns written as strings of 0’s and
I’s are cumbersome, computer scientists commonly represent integer values in
hexadecimal, or base-16 notation. Hexadecimal uses the letters a to f as six addi-
tional digits, representing the values 10 to 15 in decimal (see Figure C-5.3). Because
2* = 16, every digit in a hexadecimal number corresponds to exactly four bits
of binary, making conversions between hexadecimal and binary trivial. In tex-
tual contexts, hexadecimal values are often written with a leading 0x. Referring
to Figure C-5.3, the hexadecimal value Oxabed corresponds to the binary value
1010 1011 1100 1101 = 43981y,. Similarly, 0x400 = 2!° = 1024,,, commonly
written 1K, and 0x100000 = 2%° = 10485769, commonly written 1M.

Perhaps the most obvious representation for signed integers would reserve one
bit to indicate the sign (4 or —) and use the remaining n — 1 bits to represent
the magnitude, as in unsigned numbers. Unfortunately, this approach requires
different algorithms (and hence separate circuits) for addition and subtraction.
The almost universally adopted alternative is called two’s complement arithmetic.
It capitalizes on the observation that arithmetic on unsigned n-digit numbers,
when we ignore carries out of the left-most place, is actually arithmetic on what
mathematicians call the ring of integers modulo 2”. The sum A + B, for example, is

EXAMPLE 54

Two’s complement

5.2.1 Integer Arithmetic c9l

really (A 4+ B) mod 2". There is no particular reason, however, why we need to
interpret the bit patterns on which we are doing our arithmetic as the numbers
0..2" — 1. We can actually pick any contiguous range of 2" integers, anywhere on
the number line, and say that we’re doing wrap-around arithmetic on them instead.
In particular, we can pick the range —2"~'...2"7! — 1,

The smallest n-digit two’s complement value, —2"1, is represented by a one
followed by n—1 zeros. Successive values are obtained by repeatedly adding one,
using ordinary place-value addition. This choice of representation has several
desirable properties:

I. Non-negative numbers have the same bit patterns as they do in unsigned format.

2. The most significant bit of every negative number is one; the most significant
bit of every non-negative number is zero.

3. A single addition algorithm works for all combinations of negative and non-
negative numbers.

A list of 4-bit two’s complement numbers appears in Figure C-5.4.

The addition algorithm for both unsigned and two’s complement binary num-
bers is the obvious binary analogue of the familiar right-to-left addition of decimal
numbers. Given a fixed word size, however we must consider the issue of overflow.
By definition we should see overflow whenever the sum of two integers (not the
bit patterns, but the actual integers they represent) is outside the range of values
that can be represented in 2" bits. For unsigned integers, this is easy: overflow
occurs when we have a carry out of the most significant (left-most) place. For two’s
complement numbers, detection is somewhat trickier. First, note that the sum of a
negative and a positive number can never overflow: the result is guaranteed to be
closer to zero than the larger-magnitude addend. But if the sum is positive (it has a
zero left-most bit), then there must have been a carry out of the left-most place,
because one of the addends had a 1 in that place.

DESIGN & IMPLEMENTATION

5.3 How much is a megabyte?

The fact that 2!° ~ 10° facilitates “back-of-the-envelope” approximations, but
can sometimes lead to confusion when precision is required. Which meaning
is intended when we see 1K and 1 M? The answer, sadly, depends on context.
Main memory sizes and addresses are typically measured with powers of two,
while other quantities are measured with powers of ten. Thus a 1 GHz, 1 GB
embedded computer may start a new instruction 1,000,000,000 times per second,
but have 1,073,741,824 bytes of memory. Its 100 GB SSD will hold 10'! bytes.
When precision is important, careful writers will use alternative units in which
“bi” (for “binary”) is substituted into the second syllable and the letter i’ is
inserted into the abbreviation. Our hypothetical machine would be said to have
1 gibibyte (GiB) of memory.

c-92 Chapter 5 Target Machine Architecture

EXAMPLE 5.5

Overflow in two’s
complement addition

0111 7 1111 -1
0110 6 1110 -2
0101 5 1101 -3
0100 4 1100 —4
0011 3 1011 =5
0010 2 1010 -6
0001 1 1001 -7
0000 O 1000 -8

Figure 54 Four-bit two’s complement numbers. Note that there is a negative number (—8)
that doesn't have a positive equivalent. There is only one zero, however.

If we discard carries out of the left-most place (i.e., we stay within the ring
of integers mod 2"), then we can decree that two’s complement overflow has
occurred when we add two non-negative numbers and get an apparently negative
result (because we wrapped past the largest positive number), or when we add two
negative numbers and get an apparently non-negative result (because we wrapped
past the smallest [largest magnitude] negative number). For example, with 4-bit
two’s complement numbers, 1100 4 0110 (—4 + 6) does not overflow, even though
there is a carry out of the left-most place (which we discard). On the other hand,
0101 + 0100 (5 4 4) yields 1001, an apparently negative result for positive addends,
and 1011 4- 1100 (—5 + —4) yields 0111 in the low four bits, an apparently positive
result for negative addends. Both of these cases indicate overflow.?

Different machines handle overflow in different ways. Some generate a fault
(a hardware exception) on overflow. Some set a bit that can be tested in software.
Some provide two add instructions, one for each option. Some provide a single
add that can be made to do either, depending on the value of a bit in a special
register.

It turns out that one can obtain the additive inverse of a two’s complement
number by flipping all the bits, adding one, and discarding any carry out of the
left-most place (we defer a proof to Exercise C-5.7). Subtraction can thus be im-
plemented almost trivially using an adder, by flipping the bits of the subtrahend,
providing a one as the “carry” into the least-significant place, and “adding” as
usual. Multiplication and division of signed numbers are a bit trickier than addition
and subtraction, but still more or less straightforward.

Note that if we take any two’s complement number and its additive inverse and
add them together as if they were unsigned values, keeping the final carry bit, the
sum will be 2”. This observation is the source of the name “two’s complement.”
Of course if we discard the carry bit we get zero, which is what one would expect

of k + (—k).

2 Exercise C-5.6 considers an alternative but equivalent overflow detection mechanism, which is
particularly easy to implement in hardware.

EXAMPLE 56

Biased exponents

EXAMPLE 57

IEEE floating-point

5.2.2 Floating-Point Arithmetic c-93

5.2.2 Floating-Point Arithmetic

Floating-point numbers are the computer equivalent of scientific notation: they
consist of a mantissa or significand, sig, an exponent, exp, and (usually) a sign bit, s.
The value of a (binary) floating-point number is then —1° X sig x 2°?. Prior
to the mid-1980s, floating-point formats and semantics tended to vary greatly
across brands and even models of computers. Different manufacturers made
different choices regarding the number of bits in each field, their order, and their
internal representation. They also made different choices regarding the behavior
of arithmetic operators with respect to rounding, overflow, underflow,® invalid
operations, and the representation of numbers that are almost—but not quite—too
small to represent. With the completion in 1985 of IEEE standard number 754
(extended in 2008), the situation changed dramatically. Most processors developed
in subsequent years conform to the formats and semantics of this standard.

The 1985 version of the IEEE 754 standard defines two sizes of floating-point
numbers. Single-precision numbers have a sign bit, eight bits of exponent, and 23
bits of significand. They are capable of representing numbers whose magnitudes
vary from roughly 1073® to 10°%. Double-precision numbers have 11 bits of exponent
and 52 bits of significand. They represent numbers whose magnitudes vary from
roughly 1073% to 10°%%. The exponent is biased by subtracting the most negative
possible value from it, so that it may be represented by an unsigned number. In
single-precision, for example, the exponent 12 is represented by the value 12 —
(—127) =139 = 0x8b. The exponent —12 is represented by the value —12 — (—127)
=115= 0x73.

Most values in the IEEE standard are normalized by shifting the significand
until it is greater than or equal to 1, and less than 2. (The exponent is adjusted
accordingly, so that the value represented doesn’t change.) After normalization,
we know that the leading bit of the significand will always be one, and need not be
stored explicitly: to represent the value 1.something x 27, we only need bits for the
fractional part and the exponent. Exceptions to this rule occur near zero: very small
numbers can be represented (with reduced precision) as 0.something x 2™"+1,
where min is the smallest (most negative) exponent available in the format. Many
older floating-point standards disallow such subnormal numbers, leading to a gap
between zero and the smallest representable positive number that is larger than the
gap between the two smallest representable positive numbers. Because it includes
subnormals, the IEEE standard is said to provide for gradual underflow. Subnormal
numbers are represented with a zero in the exponent field (denoting a maximally
negative exponent) together with a nonzero fraction. (In the 1985 version of the
standard, subnormal numbers were referred to as denormal.)

Key conventions of the IEEE 754 standard are summarized in Figure C-5.5.
In addition to the single- and double-precision formats shown here, the 2008

3 Underflow occurs when the result of a computation is too close to zero to represent—that is, when
its exponent is a negative number whose magnitude is too large to represent in the number of
available bits.

Chapter 5 Target Machine Architecture

Single precision

1 8

23 bits

s> e |

f

Exponent bias b = 127

Double precision

1 11 52 bits
s> e | f
Exponent bias b = 1023

e f Value
Zero 0 0 +0
Infinity 2b+1 0 +1
Normalized 1<e<2b <any> + 1fx 26t
Denormalized 0 #0 4+ 0.fx 210
NaN 2b+1 #+0 NaN

Figure 5.5 The IEEE 754 floating-point standard. For normalized numbers, the exponent is
e — 127 or e — 1023, depending on precision. The significand is (1 + f) x 27 or (1 + f) x 272,
again depending on precision. Field f is called the fractional part, or fraction. Bit patterns in which
e is all ones (255 for single-precision, 2047 for double-precision) are reserved for infinities and
NaNs. Bit patterns in which e is zero but f is not are used for subnormal (gradual underflow)
numbers.

revision of the standard defines 16-bit half-precision and 128-bit quad-precision
binary formats, as well as decimal (power-of-ten) formats in 32-, 64-, and 128-
bit lengths. Both the old and new versions of the standard also permit vendor-
defined “extended” formats that exceed the precision of some standard format (this
accommodates, among other things, the 80-bit internal format of legacy floating
point in x86 processors). We focus here on the single- and double-precision binary
formats, which remain the most widely used.

Floating-point arithmetic is sufficiently complicated that entire books have been
written about it. Some of the characteristics of the IEEE standard of particular
interest to compiler writers include:

Zero is represented by a bit pattern consisting entirely of zeros. There is also
(confusingly) a “negative zero,” consisting of a sign bit of one and zeros in all
other positions.

Two bit patterns are reserved to represent positive and negative infinity. These
values behave in predictable ways. For example, any positive number divided by
zero yields positive infinity. Similarly, the arctangent of positive infinity is 77/2.
Certain other bit patterns are reserved for special “not-a-number” (NaN) values.
These values are generated by nonsensical operations, such as square root of a

5.3 Instruction Set Architecture (ISA) c-95

negative number, addition of positive and negative infinity, or division of zero by
zero. Almost any operation on an NaN produces another NaN. As a result, many
algorithms can dispense with internal error checks: they can follow the steps that
make sense in the absence of errors, and then check the final result to make sure
it’s not an NaN. Some NaNs, not normally generated by arithmetic operations,
can be set by the compiler explicitly to represent uninitialized variables or other
special situations; these signaling NaNs produce a hardware exception if used.

The bit patterns used to represent non-negative, non-NaN floating-point num-
bers are ordered in the same way as integers. As a result, an ordinary integer
comparison operation can (in certain contexts) be used to determine which of
two numbers is larger.

An excellent introduction to both integer and floating-point arithmetic, together
with suggestions for further reading, can be found in David Goldberg’s appendix
to Hennessy and Patterson’s architecture text [HP17, App. J].

‘/CHECK YOUR UNDERSTANDING

[. Explain how to compute the additive inverse (negative) of a two’s complement
number.

Explain how to detect overflow in two’s complement addition.
Do two’s complement numbers use a bit to indicate their sign? Explain.

Summarize the key features of IEEE 754 floating-point arithmetic.

Ul AW N

What is the approximate range of single- and double-precision floating-point
values? What is the precision (in bits) of each?

6. What is a floating-point NaN?

Instruction Set Architecture (ISA)

The instructions available on a given machine, and their encoding in machine
language, are referred to as the instruction set architecture (ISA). Existing ISAs vary
quite a lot, but all include instructions for:

Computation — arithmetic and logical operations, tests, and comparisons on values
held in registers (and possibly in memory)

Data movement — loads from memory to registers, stores from registers to mem-
ory, copies from one register (or memory location) to another

Control flow — conditional and unconditional branches (gotos), subroutine calls
and returns, traps into the operating system

c-96

Chapter 5 Target Machine Architecture

As we shall see in Section C-5.4, there have been several points in history at which
the dominant style of instruction set design has undergone significant change. In
particular, in the early to mid-1980s, designers shifted from an emphasis on com-
plex instruction set computing (CISC), which sought to maximize the useful work
performed per machine instruction, to reduced instruction set computing (RISC),
which sought to maximize the number of instructions that could be completed per
second. Some of the largest differences among machines today can be seen in those
whose ISAs began their evolution before and after 1980. In Section C-5.4.5 we will
consider one ISA in each camp: the x86, begun in 1976, and Arm, begun in 1983.

Among ISAs still in widespread use, significant differences can be seen in ad-
dressing modes, which specify the locations of operands; condition testing and
branching; and the bit-level encoding of instructions. We will consider the first two
of these in Sections C-5.3.1 and C-5.3.2 below. In the area of encoding, the most
important design decision is whether to specify each instruction and its operands in
a fixed, constant number of bits (typically 32), or whether to use different numbers
of bits for different instructions or different numbers of arguments. Fixed-length
instructions have the benefit of uniformity: they make it easier to locate and decode
successive instructions, thereby facilitating the construction of pipelined processors
(to be discussed in Section C-5.4). At the same time, certain natural operations
require more than 32 bits of encoding, and thus cannot be captured in a single
instruction, and certain common operations are sufficiently simple that 32 bits may
constitute a waste of space. As we shall see in Section C-5.4.5, many Arm processors
support an optional “Thumb mode” with shorter (16-bit) instructions. The RISC-V
standard includes optional 16-bit “compressed” instructions that interoperate with
standard 32-bit instructions.

From an architectural and performance perspective, the distinction between
CISC and RISC ISAs is no longer of great concern: modern implementations of
CISC ISAs (e.g., all recent x86 and z Series processors) incorporate a hardware
“front end” that translates the legacy ISA, on the fly, into a RISC-like internal form
amenable to heavily pipelined execution.

5.3.1 Addressing Modes

One can imagine many different ways in which a computational or data movement
instruction might specify the location of its operand(s)—its address, in a broad
sense of the word. A given operand might be in a register, in memory, or, in the
case of read-only constants, in the instruction itself (these latter are referred to as
immediate values).

One of the standard features of RISC machines is that computational instructions
operate only on values held in registers or the instruction: a load instruction must
be used to bring a value from memory into a register before it can be used as an
operand. CISC machines usually allow all or most computational instructions to
access operands directly in memory. RISC machines are therefore said to provide
a load-store or register-register architecture; CISC machines are said to provide a
register-memory architecture.

EXAMPLE 58

An if statement in x86
assembly

5.3.2 Conditions and Branches c-97

For binary operations, instructions on many machines can specify three
addresses—two sources and a destination. Others, including the x86, provide
only two-address instructions—one of the operands is always overwritten by the
result. Two-address instructions are more compact, but three-address instructions
are more flexible—they allow both operands to be reused in subsequent operations.

If an operand is in memory, its address might be found in a register, in memory,
or in the instruction, or it might be derived from some combination of values
in various locations. Instruction sets differ greatly in the addressing modes they
provide to capture these various options. On a simple RISC machine, load and store
instructions may support only the displacement addressing mode, in which the
operand’s address is found by adding some small constant (the displacement) to the
value found in a specified register (the base). The displacement is contained in the
instruction. Displacement addressing with respect to the frame pointer provides
an easy way to access local variables. Displacement addressing with a displacement
of zero is sometimes called register indirect addressing.

Some ISAs, including the Power family, SPARC, and Arm, also allow load and
store instructions to use an indexed addressing mode, in which the operand’s
address is found by adding the values in two registers. Indexed addressing is useful
for arrays: one register (the base) contains the address of the array; the second (the
index) contains the offset of the desired element.

CISC machines typically provide the richest set of addressing modes, and allow
them to be used in computational instructions, as well as in loads and stores. On
the x86, for example, the address of an operand can be calculated by multiplying
the value in one register by a small constant, adding the value found in a second
register, and then adding another small constant, all in one instruction.

5.3.2 Conditions and Branches

All instruction sets provide a branching mechanism to update the program counter
under program control. Branches allow compilers to implement conditional state-
ments, subroutines, and loops. Conditional branches may be controlled in several
ways. On many machines they use condition codes. As mentioned in Section C-5.1,
condition codes are usually implemented as a set of bits in a special processor status
register. All or most of the arithmetic, logical, and data-movement instructions
update the condition codes as a side effect. The exact number of bits varies from
machine to machine, but three and four are common: one bit each to indicate
whether the instruction produced a zero value, a negative value, and/or an overflow
or carry. To implement the following test, for example,

A=B+C
if A =0 then
body

a compiler for the x86* might generate

c-98 Chapter 5 Target Machine Architecture

EXAMPLE 59

Compare and test
instructions

movl C, %eax ; move long-word C into register eax

addl B, %eax ; add

movl Yeax, A ; and store

jne L1 ; branch (jump) if result not equal to zero

body
L1:

The first three instructions all set the condition codes. The fourth (jne) tests the
codes in the wake of the mov1 that stores to A. It branches if the codes indicate that
the value was not zero.

For cases in which the outcome of a branch depends on a value that has not just
been computed or moved, most machines provide compare and test instructions.
Again on the x86:

movl A, Yeax ; move long-word A into register eax
if A < B then cmpl B, eax ; compare to B
body jg L1 ; branch (jump) if greater
body
L1:
if A> 0 then testl Jeax, %eax ; compare jeax (A) to O
body jle L2 ; branch if less than or equal
body
L2:

The x86 cmpl instruction subtracts its source operand from its destination
operand and sets the condition codes according to the result; it does not, however,
overwrite the destination operand. The testl instruction ands its two operands
together and compares the result to zero. Most often, as shown here, the two
operands are the same. When they are different, one is typically a mask value that
allows the programmer or compiler to test individual bits or bits fields in the other
operand.

Unfortunately, traditional condition codes make it difficult to implement impor-
tant performance enhancements, in both the compiler and the hardware. Because
the codes are set by almost every instruction, the compiler must avoid placing unre-
lated instructions between the code that evaluates a condition and the branch that
relies on the outcome of that evaluation. The hardware, similarly, must preserve the
codes across any unrelated instructions that are executed out of order. To address
these problems, the Arm and SPARC architectures make setting of the condition
codes optional on an instruction-by-instruction basis. The Power architecture

4 Readers familiar with the x86 should be warned that this example uses the assembler syntax of
the GNU compiler collection (gcc) and its assembler, gas. This syntax differs in several ways
from Microsoft and Intel assembly. Most notably, it specifies operands in the opposite order. The
instruction addl B, %eax, for example, adds the value in B to the value in register %eax and
leaves the result in %eax: in GNU assembly the destination operand is listed second. In Intel and
Microsoft assembly it’s the other way around: addl B, %eax would add the value in register %ebx
to the value in B and leave the result in B.

EXAMPLE 5. IO

Conditional move

5.3.2 Conditions and Branches c-99

provides eight separate sets of condition codes; compare and branch instructions
can specify the set to use. MIPS and RISC-V machines eliminate condition codes
entirely; instead, they provide instructions to compare two registers and branch
based on the outcome.

Several ISAs, including Power, SPARC, and recent generations of the x86, pro-
vide a conditional move instruction that copies one register into another if and
only if the condition codes are appropriately set. On the x86, the code fragment
C := max(A, B) might naively be translated

movl A, Yecx
movl B, %edx
cmpl %edx, hecx ; compare %edx (A) to %ecx (B)

jle L1 ; branch if less than or equal
movl %hecx, C ; store A to C
jmp L2
L1:
movl %edx, C ; store B to C
L2:

With a conditional move instruction it can become the following instead:

movl B, %ecx

movl A, Yedx

cmpl %hecx, hedx ; compare %edx (A) to %ecx (B)
cmovgl %edx, %ecx ; move A into jecx if greater
movl hecx, C ; store to C

A few ISAs, including 32-bit Arm and IA-64 (Itanium), allow almost any in-
struction to be marked as conditional. This more general mechanism is known as
predication. It allows an if...then ... else construct to be translated into straight-
line (branch-less) code: instructions in the then and else paths are prefixed with
complementary conditions, causing one path to take effect and the other to func-
tion as a sequence of no-ops—instructions that have no effect. When both paths are
short, it may be cheaper (at least in some processor implementations) to execute
the no-ops than it would have been to execute a branch.

\/CHECK YOUR UNDERSTANDING

1. ‘What is the most popular instruction set architecture for desktop and server
machines?

8. What is the most popular instruction set architecture for tablets and cell phones?
9. What is the difference between big-endian and little-endian addressing?
[0. What is the purpose of a cache?

[1. Why do many machines have more than one level of cache?

c-100

Chapter 5 Target Machine Architecture

[2. How many processor cycles does it typically take to access primary (level-1)
cache? How many cycles does it typically take to access main memory?

[3. What is data alignment? Why do many processors insist upon it?
[4. List four common formats (interpretations) for bits in memory.
[5. What is IEEE standard number 754? Why is it important?

6. What are the tradeoffs between two-address and three-address instruction
formats?

I7. Describe at least five different addressing modes. Which of these are commonly
supported on RISC machines?

[8. What are condition codes? Why do some architectures not provide them?
What do they provide instead?

Architecture and Implementation

The typical processor implementation consists of a collection of functional units,
one (or more) for each logically separable facet of processor activity: instruction
fetch, instruction decode, operand fetch from registers, arithmetic computation,
memory access, write-back of results to registers, and so on. One could imagine an
implementation in which all of the work for a particular instruction is completed
before work on the next instruction begins, and in fact this is how the earliest
computers were constructed. The problem with this organization is that most of
the functional units are idle most of the time. Modern processor implementations
have a substantially more complicated organization, in which the executions of
many instructions overlap one another in time. To generate fast code, a compiler
must understand the details of this organization.

Pipelining is the most fundamental form of instruction overlap. Originally
developed for supercomputers of the 1960s, it moved into single-chip processors
with the RISC revolution of the 1980s. On a pipelined machine, functional units
work like the stations on an assembly line, with different instructions passing
through different pipeline stages concurrently. Pipelining appears today in even
the most inexpensive personal computers, and in all but the simplest processors
for the embedded market. A simple processor may have 3-6 pipeline stages. The
Arm Cortex-A78 (used in many cell phones) and the Intel Core i7 (used in many
laptops) have 13 and 14 stages, respectively. The “superpipelined” Intel Pentium 4E
had 31.

By allowing (parts of) multiple instructions to execute in parallel, pipelining can
dramatically increase the number of instructions that can be completed per second,
but it is not a panacea. In particular, a pipeline will stall if the same functional unit
is needed in two different instructions simultaneously, or if an earlier instruction
has not yet produced a result by the time it is needed in a later instruction, or if the

5.4.1 Microprogramming c¢-101

outcome of a conditional branch is not known (or guessed) by the time the next
instruction needs to be fetched.

We shall see in Section C-5.5 that many stalls can be avoided by adding a little
extra hardware and then choosing carefully among the various ways of translating
a given construct into target code. A typical example occurs in the case of floating-
point arithmetic, which tends to be much slower than integer arithmetic. Rather
than stall the entire pipeline while executing a floating-point instruction, we can
build a separate functional unit for floating-point math, and arrange for it to operate
on a separate set of floating-point registers. In effect, this strategy leads to a pair
of pipelines—one for integers and one for floating-point—that share their first
few stages. The integer branch of the pipeline can continue to execute while the
floating-point unit is busy, so long as subsequent instructions do not require the
floating-point result. The need to reorder, or schedule, instructions so that those
that conflict with or depend on one another are separated in time is one of the
principal reasons why compiling for modern processors is hard.

54.] Microprogramming

As technology advances, there are occasionally times when it becomes feasible to
design machines in a very different way. During the 1950s and the early 1960s,
the instruction set of a typical computer was implemented by soldering together
large numbers of discrete components (transistors, capacitors, etc.) that performed
the required operations. To build a faster computer, one generally designed new,
more powerful instructions, which required extra hardware. This strategy had
the unfortunate effect of requiring assembly language programmers (or compiler
writers, though there weren’t many of them back then) to learn a new language
every time a new and better computer came along.

A fundamental breakthrough occurred in the early 1960s, when IBM hit upon
the idea of microprogramming. Microprogramming allowed a company to provide
the same instruction set across a whole line of computers, from inexpensive slow
machines to expensive fast machines. The basic idea was to build a “microengine”
in hardware that executed an interpreter program in “firmware.” The interpreter in
turn implemented the “machine language” of the computer—in this case, the IBM
360 instruction set. More expensive machines had fancier microengines, with more
direct support for the instructions seen by the assembly-level programmer. The
top-of-the-line machines had everything in hardware. In effect, the architecture
of the machine became an abstract interface behind which hardware designers
could hide implementation details, much as the interfaces of modules in modern
programming languages allow software designers to limit the information available
to users of an abstraction.

In addition to allowing the introduction of computer families, microprogram-
ming made it comparatively easy for architects to extend the instruction set. Nu-
merous studies were published in which researchers identified some sequence of
instructions that commonly occurred together (e.g., the instructions that jump to

c-102

Chapter 5 Target Machine Architecture

a subroutine and update bookkeeping information in the stack), and then intro-
duced a new instruction to perform the same function as the sequence. The new
instruction was usually faster than the sequence it replaced, and almost always
shorter (and code size was more important then than now).

5.4.2 Microprocessors

A second architectural breakthrough occurred in the mid-1970s, when very large
scale integration (VLSI) chip technology reached the point at which a simple mi-
croprogrammed processor could be implemented entirely on one inexpensive chip.
The chip boundary is important because it takes much more time and power to
drive signals across macroscopic output pins than it does across intrachip connec-
tions, and because the number of pins on a chip is limited by packaging issues. With
an entire processor on one chip, it became feasible to build a commercially viable
personal computer. Processor architectures of this era include the MOS Technology
6502, used in the Apple IT and the Commodore 64, and the Intel 8080 and Zilog
780, used in the Radio Shack TRS-80 and various CP/M machines. Continued im-
provements in VLSI technology led, by the mid-1980s, to 32-bit microprogrammed
microprocessors such as the Motorola 68000, used in the original Apple Macintosh,
and the Intel 80386, used in the first 32-bit IBM PCs.

From an architectural standpoint, the principal impact of the microprocessor
revolution was to constrain, temporarily, the number of registers and the size of
operands. Where the IBM 360 (not a single-chip processor) operated on 32-bit
data, with 16 general-purpose 32-bit registers, the Intel 8080 operated on 8-bit
data, with only seven 8-bit registers and a 16-bit stack pointer. Over time, as VLSI
density increased, registers and instruction sets expanded as well. Intel’s 32-bit
80386 was introduced in 1985.

54.3 RISC

By the early 1980s, several factors converged to make possible a third architectural
breakthrough. First, VLSI technology reached the point at which a pipelined 32-
bit processor with a sufficiently simple instruction set could be implemented on
a single chip, without microprogramming. Second, improvements in processor
speed were beginning to outstrip improvements in memory speed, increasing
the relative penalty for accessing memory, and thereby increasing the pressure to
keep things in registers. Third, compiler technology had advanced to the point at
which compilers could often match (and sometimes exceed) the quality of code
produced by the best assembly language programmers. Taken together, these
factors suggested a reduced instruction set computer (RISC) architecture with a fast,
all-hardware implementation, a comparatively low-level instruction set, a large
number of registers, and an optimizing compiler.

The advent of RISC machines ran counter to the ever-more-powerful-instruc-
tions trend in processor design, but was to a large extent consistent with established

5.4.4 Multithreading and Multicore ~ ¢-103

trends for supercomputers. Supercomputer instruction sets had always been rela-
tively simple and low-level, in order to facilitate pipelining. Among other things,
effective pipelining depends on having most instructions take the same, constant
number of cycles to execute, and on minimizing dependences that would prevent
a later instruction from starting execution before its predecessors have finished.

The most basic rule of processor performance holds that total execution time on
any machine equals the number of instructions executed times the length in time
of a cycle times the average number of (non-overlapped) cycles per instruction
(CPI). What we might call the “CISC design philosophy” is to minimize execution
time by reducing the number of instructions, letting each instruction do more
work. What we might call the “RISC design philosophy” is to reduce the length
of the cycle and average number of cycles between the initiations of consecutive
instructions. Though once cast as design alternatives, these philosophies are not
mutually exclusive: complex instructions can successfully be added to a RISC
design, so long as their implementation does not compromise IPC or cycle time.

High performance processors attempt to minimize CPI by executing as many
instructions as possible in parallel. One core of an IBM Powerl0, for example,
can have over 1000 instructions simultaneously “in flight” (and each processor
chip has 8 cores). Some processors have very deep pipelines, allowing the work
of an instruction to be divided into very short cycles. Many are superscalar: they
have multiple parallel pipelines, and start more than one instruction each cycle.
(This requires, of course, that the compiler and/or hardware identify instructions
that do not depend on one another, so that parallel execution is semantically
indistinguishable from sequential execution.) To minimize artificial dependences
between instructions (as, for instance, when one instruction must finish using
a register as an operand before another instruction overwrites that register with
a new value), many machines perform register renaming, dynamically assigning
logically independent uses of the same architectural register to different locations in
a larger set of physical (implementation) registers. A high performance processor
may actually execute mutually independent instructions out of order when it can
increase instruction-level parallelism by doing so. These techniques dramatically
increase implementation complexity but not architectural complexity; in fact, it is
architectural simplicity that makes them possible.

544 Multithreading and Multicore

For 50 years, improvements in silicon fabrication technology have fueled a seem-
ingly inexorable increase in the density of integrated circuits. This trend, first
observed by Gordon Moore in 1965, has seen the number of transistors on a chip
double roughly every two years since the mid 1960s—a million-fold increase since
the early 1970s. Processor designers have used this amazing windfall in several
major ways:

c-104

Chapter 5 Target Machine Architecture

Faster clocks. Since smaller transistors can charge and discharge more quickly,
higher-density chips can run at a higher clock rate. The Intel 8080 ran at 2 MHz
in 1974. Rates in excess of 2 GHz (1000 faster) are commonplace today.

Instruction-level parallelism (ILP). As noted in the previous subsection, modern
processors employ pipelined, superscalar, and out-of-order execution to keep a
very large number of instructions “in flight,” and to execute those instructions
as soon as their operands become available.

Speculation. To keep the pipeline full, a modern processor guesses which way
control will go at every branch, and speculatively executes instructions along the
predicted control path. Some processors employ additional forms of speculation
as well: they may, for example, guess the value that will be returned by a read
that misses in the cache. So long as guesses are right, the processor avoids
“unnecessary” waiting. It must always check after the fact, however, and be
prepared to undo any erroneous operations in the event that a guess was wrong.

Larger caches. As noted in Sidebar C-5.2, caches play a critical role in coping with
the processor-memory gap induced by higher clock rates. Higher VLSI density
makes room for larger caches.

Unfortunately, by roughly 2004, the first three of these standard techniques had
pretty much hit a dead end. Both faster clocks and speculation lead to very high
energy consumption. To first approximation, a chip’s energy requirements are
proportional to its physical area and clock frequency. While caches take less energy
than average (they’re comparatively passive), the bookkeeping circuits required for
speculation are very power-hungry. Where the 8080 consumed about 1.3 W, a desk-
top processor today may consume 150 W—more heat per unit area than the burner
of a hot plate, and essentially at the limit of what we can cool without refrigeration.
Simultaneously, ILP exploitation and speculative execution have approached the
inherent limits of traditional sequential code. Bluntly put, modern single-core
processors execute as many instructions in parallel as traditional programs will
allow.

Robbed of the ability to run a single program faster, processor designers began
building multithreaded and multicore chips that can run more than one program at
once. Multithreading was introduced first. It allows several programs (threads),
represented by several sets of registers and instruction fetching logic, to share the
back end (execution units) of a single processor. In effect, the extra threads serve to
fill “bubbles” (stalls) in the processor’s pipeline. A multicore processor, by contrast,
has the equivalent of two or more complete processors (cores) on a single chip (by
convention, a single chip is referred to as “a processor,” regardless of the number
of cores). Compared to a high-end turn-of-the-century uniprocessor (a single-core
machine), the cores of a modern chip may run at a somewhat slower clock rate,
and expend less energy on speculation and ILP discovery, in order to maximize
performance per watt.

In moving to multicore processors, the computer industry effectively gave up
on running conventional programs faster, and is banking instead on running
better programs. This makes the multicore revolution very different from previous

5.4.4 Multithreading and Multicore ~ c-105

changes in design philosophy. Where previous changes were mostly invisible to
programmers (code might perhaps have to be recompiled to make the best use of a
new machine), the multicore revolution has required programs to be rewritten in
explicitly concurrent languages.

Unfortunately, parallel programming is hard. In practice, programs that can
make effective use of hundreds or thousands or cores tend to be highly regular,
applying the same operations concurrently to elements of some very large data set.
For such calculations, traditional CPU architectures are overkill. As a result, we are
now in the throes of yet another revolutionary change in computer architecture—
one that relies on massively parallel hardware accelerators for big-data calculations.
This revolution began with the development of general-purpose graphical process-
ing units (GPUs), and has continued with accelerators for image processing, media
transcoding, encryption, compression, and neural network training and execution.
Efforts to use accelerators more frequently and effectively will be a major focus
of systems research over the coming decade, but we can already see the point of
diminishing returns. What will come next is currently very unclear.

‘/CHECK YOUR UNDERSTANDING

[9. What is microprogramming? What breakthroughs did its invention make
possible?

20. What technological threshold was crossed in the mid-1970s, enabling the
introduction of microprocessors? What subsequent threshold, crossed in the
early 1980s, made RISC machines possible?

21. What is pipelining?

12. Summarize the difference between the CISC and RISC philosophies in instruc-
tion set design.

13. Why do RISC machines allow only load and store instructions to access mem-
ory?

24. Name three CISC architectures. Name three RISC architectures. (If you're
stumped, see the Summary and Concluding Remarks [Section C-5.6].)

15. How can the designer of a pipelined machine cope with instructions (e.g.,
floating-point arithmetic) that take much longer than others to compute?

26. Why are microprocessor clock rates no longer increasing?
1]. Explain the difference between multithreaded and multicore processors.

18. How does the multicore revolution differ from major previous changes in
computer architecture? What special problems does it pose?

c-106

exampLe 5.1 |
The x86 ISA

exampLe 5.12
The Arm ISA

Chapter 5 Target Machine Architecture

54.5 Two Example Architectures: The x86 and Arm

We can illustrate much of the variety in ISA design—including the CISC and
RISC philosophies—by examining a pair of representative architectures. The x86 is
the most widely used ISA in the server, desktop, and laptop markets. The original
implementation, the 8086, was announced in 1978. Major changes were introduced
in Intel’s 8087, 80286, 80386, Pentium Pro, Pentium/MMX, Pentium III, and
Pentium 4, and in AMD’s K8 (Opteron). Though technically backward compatible,
these changes were often out of keeping with the philosophy of earlier generations.
The result is an architecture with numerous stylistic inconsistencies and special
cases. While both AMD and Intel have trade names for the instruction set, the
name “x86” is widely used to refer to it generically. When necessary, “x86-32”
and “x86-64" are used to refer to the 32- and 64-bit versions, both of which are in
widespread use today. Some vendors use “x64” to refer to the 64-bit version.

Early generations of the x86 were extensively microprogrammed. More recent
generations still use microprogramming for the more complex portions of the
instruction set, but simpler instructions are translated directly (in hardware) into
between one and four microinstructions that are in turn fed to a heavily pipelined,
RISC-like computational core.

The original version of the Arm architecture, developed by Acorn Computers of
Cambridge, England, was announced in 1983. Acorn’s contemporary descendant,
Arm Holdings, oversees the evolution of the instruction set, and designs—but does
not fabricate—implementations. The company licenses both the instruction set
and the designs to scores of partner firms, which incorporate Arm processors in
everything from toasters and fuel injectors to cell phones and tablet computers—
and, increasingly, to desktops and servers as well.

Like the x86, Arm has evolved considerably over time, and given its wide range
of applications, it is available in a bewildering array of versions; these vary not
only in speed and cost, but also in feature set. Unlike the x86, Arm never had 8-
or 16-bit versions: until recently it was 32-bit only. A 64-bit extension, Arm v8,
designed to compete in the desktop and server markets, was announced in 2011;
the first commercial implementations became available in 2013.

Among the most significant differences between the x86 and Arm are their
memory access mechanisms, their register sets, and the variety of instructions they
provide. Like all RISC architectures, Arm allows only load and store instructions to
access memory; all computation is done with values in registers (or in immediate
fields of the current instruction). Like most CISC architectures, the x86 allows
computational instructions to operate on values in either registers or memory. Like
most RISC architectures, 64-bit Arm has 32 integer registers and 32 floating-point
registers. On 32-bit Arm machines, there are only 16 integer registers (and only 16
are visible on a 64-bit machine when running in 32-bit mode). The x86, by contrast,
has 16 registers of each kind when running in 64-bit mode, and only 8 in 32-bit
mode. (There is also a separate set of 8 floating-point registers, 80 bits in length.
These are used by an older set of floating-point instructions; they are increasingly
ignored by modern compilers.) Arm provides many fewer distinct instructions

EXAMPLE 5 I 3

x86 and Arm register sets

5.4.5 Two Example Architectures: The x86 and Arm c-107

than does the x86, and its instruction set is much more internally consistent; the
x86 has a huge number of special cases. Arm instructions are normally 4 bytes
long, though there is a special version of 32-bit mode called “Thumb” that provides
2-byte encodings of the most commonly used instructions. Instructions on the x86
vary from 1 to 15 bytes in length.

Memory Access and Addressing Modes

Although Arm is a register-register architecture, while the x86 is register-memory,
the addressing modes of the two machines are actually quite similar: Arm has a
richer set of options than many other RISC designs.

In 32-bit mode, an Arm address is formed by adding an offset to the value in a
specified base register. The offset can be either an immediate displacement or the
value in a second, index register. In the latter case, the offset can be shifted (scaled)
up to 31 bit positions, effectively multiplying it by an arbitrary power of 2. With
either kind of offset, the base register can optionally be updated (either before or
after using its value), by adding or subtracting the (already shifted) offset. This
pre- or post-indexing mechanism facilitates iteration through arrays. To economize
on encoding bits, some of the addressing combinations are unavailable in 64-bit
mode.

As we shall see under “Registers” below, 32-bit Arm assigns a register number to
the program counter (PC), allowing that register to be used at the base in load and
store instructions. This convention makes it easy to read values from the code of the
running program—a trick that facilitates the construction of position-independent
code (to be discussed in Section C-15.7.1). It also means that a branch is simply a
write to the PC.

On the x86, an address is also formed by adding an offset to the value in a base
register, but in this case the offset can reflect both an immediate displacement and
the (possibly scaled) value in an index register. Scaling factors are less general than
on Arm: possible values are 1, 2, 4, and 8. Pre- and post-increment options are also
unavailable, though there are separate push and pop instructions that use the stack
pointer (SP) as a base register, and automatically update it. A special PC-relative
addressing mode is available in 64-bit mode, but not in 32-bit mode.

X86 instructions are two-address: the result of a computation overwrites one
of the operands, which may be in either a register or memory. Computation is
normally three-address on Arm (two sources and a destination can all be separate
registers), but two-address when running in Thumb mode.

Registers

The user-visible registers of the two architectures are illustrated pictorially in Fig-
ure C-5.6. As is immediately obvious, the Arm registers are both more numerous
and more regular in structure than those of the x86. To a large extent this reflects
the designs’ respective histories. The 8086 was introduced in 1978 with 16-bit
integer registers. (It was source-code compatible, though not binary compatible,
with the earlier 8-bit 8080.) Intel expanded the registers to 32 bits in 1985 with the
80386, and AMD expanded them again to 64 bits in 2000. Arm, by contrast, has

c-108 Chapter 5 Target Machine Architecture

Integer registers

Floating-point/SSE registers

Program counter

Integer condition
codes and flags

Floating-point/MMX registers

SSE control/status register
Floating-point

| control/status,

condition code,
1

and tag registers

Integer registers

Floating-point/SIMD registers

%

Stack pointer and program counter

[Condition codes and flags

Figure 5.6 User-visible registers of the x86-64 (top) and Arm v8 (bottom). For both architectures, shaded areas indicate the
subset visible in 32-bit mode. The last of the integer registers on Arm (shown with a dotted line) is virtual; it behaves as if it
always contained a zero. The cross-hatched area indicates “banked” copies of the 32-bit registers, which are mapped into the
bottom halves of the higher-numbered 64-bit registers. Other special registers, of use only in privileged code, are omitted for
both architectures. Also omitted are the AVX registers of recent high-end x86 processors and the eight segment registers of the
x86, which support the obsolete 80286 addressing system, and are not (for the most part) employed by modern compilers.

5.4.5 Two Example Architectures: The x86 and Arm c-109

seen less re-engineering. It was introduced with 32-bit registers in 1983, and was
extended once, to 64 in 2011.

The x86-32 has eight 32-bit integer registers, plus the program counter and the
processor status word, which includes the condition codes. For historical reasons,
the integer registers are named eax, ebx, ecx, edx, esi, edi, esp, and ebp. They
can be used interchangeably in most instructions, but certain instructions use them
in special ways. Registers eax and edx, for example, are implicitly the destination
registers for integer multiplication and division operations. Register ecx is read
and updated implicitly by certain loop-control instructions. Registers esi and
edi are used implicitly by instructions that copy, search, or compare strings of
characters in memory. Register esp is used as a stack pointer; it is read and written
implicitly by push, pop, and subroutine call/return instructions. Register ebp is
typically used as a frame pointer; it is manipulated by instructions designed to
allocate and deallocate stack frames.

For backward compatibility with 16-bit code, there are separate names for the
lower halves of all eight integer registers: ax, bx, cx, dx, si, di, sp, and bp. Four
of these (ax, bx, ax, and ax) have separate names for their upper and lower halves:
ah, al, bh, bl, ch, c1, dh, and d1. The x86-64 doubles the length of the 32-bit
registers, naming them rax, rbx, rcx, rdx, rsi, rdi, rsp, and rbp. It then adds
another 8, named r8 through r15. Register rbp is no longer used as a frame
pointer in 64-bit mode.

Floating-point instructions were originally designed (in the 8087) to operate on
a stack of eight additional registers, each 80 bits in length. Three 16-bit companion
registers hold IEEE floating-point status and control, floating-point condition
codes, and “tag” bits that indicate whether the values in the various floating-point
registers are normal, subnormal, NaN, or garbage. All computation in this legacy
“x87” portion of the instruction set is performed in extended precision; values
are converted to and from IEEE single- and double-precision floating-point when
written to or read from memory.

Vector instructions were added to the x86 with the Pentium/MMX in 1997.
To avoid requiring the operating system to save additional state when switching
between processes, MMX instructions were designed to share the x87 registers.
In practice the arrangement proved less than ideal: the extra internal precision
of x87 floating point could cause programs to behave differently than they did on
other IEEE 754-compliant machines, and stack-based addressing impeded code
improvement. Moreover MMX lacked support for floating-point vectors, and the
small total number of registers made it difficult to use vectors and floating point in
the same program. To a large degree, both x87 floating point and MMX have been
supplanted by a series of extensions known as SSE (Streaming SIMD Extensions)
and AVX (Advanced Vector Extensions), begun in 1999. These extensions employ
a separate set of 128, 256, or 512-bit registers—8 of them in 32-bit mode, 16 in
64-bit mode—and provide full support for IEEE floating point. While some 32-bit
compilers continue to use the older instructions and register file, 64-bit compilers
typically use only SSE and AVX.

c-110

Chapter 5 Target Machine Architecture

Arm v7 has a total of 48 registers: 16 integer and 32 floating-point, named
r0-r15 and d0-d31. Registers r13, r14, and r15 double as the stack pointer (SP),
link register (return address—LR), and program counter (PC), respectively. All of
the integer registers are 32 bits wide. There is also a 32-bit processor status register
that includes the condition codes.

To facilitate fast, low-power interrupt handling in embedded applications, with
minimal saving and restoring of state, Arm provides separate “banked” copies
of the SP and LR register for each of several different interrupt (privilege) levels.
A so-called “fast interrupt” level has additional copies of r8-r12. While these
banked copies are generally of interest only to systems software, they need to be
mentioned in order to fully understand the 64-bit version of the ISA.

For Arm v8, designers increased the number of integer registers to 31, doubled
their width, and named them x0-x30. In a convention common to RISC machines,
a 32nd “virtual register” behaves as if it always contained a zero. As shown in Fig-
ure C-5.6, the lower halves of x0-x15 overlap r0-r15. In x16-x30, the designers
took the opportunity to overlap the banked copies of the 32-bit registers. This
convention allows high-privilege-level 64-bit code (e.g., a virtual machine monitor)
to more easily manipulate the state of medium-privilege-level 32-bit code (e.g., a
guest operating system). To avoid security leaks, 64-bit code is never permitted
to run at a lower privilege level than 32-bit code. The floating-point registers, for
their part, were simply doubled in length, from 64 to 128 bits each. As in x86 SSE,
they double as vector registers.

Register Conventions Beyond the special treatment given some registers in hard-
ware, the designers of both the x86 and Arm recommend additional conventions
to be enforced by software. On x86-32, register ebp is generally used for a frame
pointer, whether or not the compiler makes use of special frame management
instructions. Function values are returned in register eax (or in the pair eax:edx
in the case of 64-bit return values). Any subroutine that modifies registers ebx, esi,
or edi must save their old values in memory, and restore them before returning.
Any caller that needs the values in eax, ecx, or edx must save them before making
a call.

Additional conventions apply on x86-64. There is generally no frame pointer—
rsp is used as the base when accessing data in the stack, and rbp is just an ordinary
register. Moreover, the first six integer arguments to a subroutine are passed in
registers rdi, rsi, rdx, rcx, r8, and r9, respectively. If there are fewer arguments,
these registers must be saved by the caller if their contents are needed later. Registers
rbx, rbp, r13, ri4, and r15 must be saved by the callee. (Calling sequences will
be discussed in more detail in Section 9.2.)

Conventions on Arm are similar. In 32-bit mode, in addition to r13, r14, and
r15 (SP, LR, and PC), which are special-cased in hardware, registers r0-r3 are
used by convention to hold the first four subroutine arguments and the return
value, if any. Register r9 is reserved for “platform-specific” purposes; r12 is used
as a scratch register for complex calls involving dynamic linking (to be discussed in
Section C-15.7). In 64-bit mode, x0-x7 are used for arguments and returns, r18 is

5.4.5 Two Example Architectures: The x86 and Arm c-111

platform-specific, and r16 and r17 are call-time scratch registers. In both modes,
registers without special purposes are divided roughly 50-50 into caller-saves and
callee-saves groups.

Instructions

While it can be difficult to count the instructions in a given instruction set (the x86
can branch on any of 16 different combinations of the condition codes; does this
mean it has 16 conditional branch instructions, or one with 16 variants?), it is still
clear that the x86 has more, and more complex, instructions than does Arm. Some
of the features of the x86 not found on Arm include:

Binary-coded decimal arithmetic (see Sidebar 7.4).
Character-string search, compare, and copy operations.
Bit string search and copy operations.

Miscellaneous “combination” instructions. These perform the same task as
some multi-instruction sequence, but require less code space and presumably
run faster. Examples include subroutine calls and returns, stack operations, and
loop control.

Instructions to support the obsolete 80286 segmented memory system.
On the other hand, Arm provides:

“Building-block” instructions that perform part of some operation too complex
to propagate through the pipeline as a single instruction.

“Saturating” arithmetic, which “holds” at the extreme values of a given integer
type on overflow, rather than “rolling around” mod 2"erdsize,

Combination shift-and-® instructions, for most arithmetic operations P.
Predication.
Pre- and post-decrement addressing.

More important than any difference in the number or types of instructions,
however, is the difference in how those instructions are encoded. Like most CISC
machines, the x86 places a heavy premium on minimizing code size (and thus the
need for memory at run time), at the expense of comparatively difficult instruction
decoding. Instructions range from 1 to 15 bytes in length, with a multitude of
internal formats. Similar fields do not necessarily have the same length, or appear
at the same offset, in different instructions. Operand specifiers vary in length
depending on the choice of addressing mode. In 64-bit (16-register) mode, the 4th
bit required to name a register is not contiguous with the other 3. One-byte prefix
codes can be prepended to certain instructions to modify their behavior, causing
them to repeat multiple times, access operands in a different segment of the 80286
address space, or lock the bus for atomic access to main memory.

The instruction encodings for Arm are substantially more regular, but they have
their own peculiarities. In particular, where the myriad versions of the x86 share a

c-112

Chapter 5 Target Machine Architecture

single, common encoding, a 64-bit Arm machine supports three separate, quite
different encodings, called A32, T32, and A64. (All three can be generated from a
common assembly language.)

Like most RISC ISAs, A32 devotes 32 bits to every machine instruction. Its most
unusual characteristic is the reservation of 4 bits in most instructions to encode
predication conditions, and a 5th to indicate whether to set the condition codes.
Operations that cannot be encoded in 32 bits (e.g., because they would require a
32-bit immediate value) must be expressed with multiple instructions. To load a
32-bit value into a register, for example, one might use a MOV instruction to load
the lower half from a 16-bit intermediate value, followed by a MOVT (move top)
instruction to load the upper half.

Uniform instruction length has the desirable property of simplifying the con-
struction of a pipelined processor. A shortcoming is that easily encoded (e.g.,
single-operand) instructions contain unneeded bits. Because it can capture such
instructions in a smaller number of bytes, x86 code tends to be significantly denser
than equivalent A32 code. To address this relative weakness, Arm introduced the
T32 instruction set, also known as “Thumb.” The most commonly executed, easily
encoded instructions are specified in 16 bits in Thumb. Certain other instructions
are encoded in 32 bits (though not with the same encoding as in A32). Because it
lacks predication and some of the less common instructions, Thumb code tends to
run slightly less quickly than equivalent A32 code. It is substantially more dense,
however—a property of significant value in some embedded applications, where
memory space or bandwidth may be scarce. A common practice for such applica-
tions is to compile the most performance-critical code to A32 and the rest to T32.
The running program can switch from one instruction set to the other simply by
executing a special branch instruction.

When designing x86-64, AMD was able to accommodate longer register names
and new operations by adding an extra byte to existing instruction encodings.
For Arm, fixed instruction lengths made this strategy infeasible. In a manner
reminiscent of the previous design of Thumb, the company instead developed an
entirely new encoding for A64—one that captures most preexisting instructions, a
variety of new instructions (for 64-bit computation), and an extra bit per operand
to accommodate expansion of the integer register set from 16 to 32. The key to
making all of this fit in 32 bits was to reclaim the 4 bits devoted to predication in
A32. The resulting instruction set and encoding are reminiscent of MIPS, Power,
and SPARC, and RISC-V; all of which have always had 32 integer registers each.

As noted under “Registers” above, Arm designers chose to identify the new
integer registers of A64 with the “banked” register copies reserved for (privileged)
exception handling code in A32. To prevent 64-bit applications from using this
capability to “spy” on more privileged code, transitions between A64 and the
existing A32 and T32 encodings occur only on exceptions, when they can be
mediated by the operating system—user-level code cannot change into or out of
64-bit mode the way it can transition back and forth between A32 and T32.

EXAMPLE 5. |4

Performance # clock rate

5.5 Compiling for Modern Processors ~ ¢-113

‘/CHECK YOUR UNDERSTANDING

19. Describe the most general (complex) addressing modes of the x86 and Arm
architectures.

30. How many integer and floating-point registers are provided by each machine
in 32-bit mode? In 64-bit mode? How wide are these registers?

31. Summarize the register usage conventions of the x86 and Arm.
32. Explain the utility of A64’s “virtual” 32nd integer register.

33. List at least three “complex” instructions provided by the x86 instruction set
but not provided by the Arm instruction set.

34. List at least two mechanisms provided by Arm but not by the x86.
35. Describe how floating-point support in the x86 has evolved over time.

36. Summarize the most important difference in how instructions are encoded on
the x86 and Arm.

31. What is the purpose of Arm’s T32 (Thumb) instruction encoding?

38. Contrast the strategies adopted by AMD and Arm in extending their respective
architectures from 32 to 64 bits.

Compiling for Modern Processors

Programming a modern machine by hand, in assembly language, is a tedious un-
dertaking. Values must constantly be shuffled back and forth between registers and
memory, and operations that seem simple in a high-level language often require
multiple instructions. With the rise of RISC-style instruction sets and implemen-
tations, complexity that was once hidden in microcode has been exported to the
compiler. Fortunately, compilers don’t get bored or make careless mistakes, and
can easily deal with comparatively primitive instructions. In fact, when compiling
for recent implementations of the x86, compilers generally limit themselves to a
small, RISC-like subset of the instruction set, which the processor can pipeline
effectively. Old programs that make use of more complex instructions still run, but
not as fast; they don’t take full advantage of the hardware.

The real difficulty in compiling for modern processors lies not in the need to use
primitive instructions, but in the need to keep the pipeline full and to make effective
use of registers. Early in this century, a user who traded in, say, a Pentium III PC
for one with a Pentium 4 would typically find that while old programs ran faster
on the new machine, the speed improvement was nowhere near as dramatic as
the difference in clock rates would have led one to expect. Improvements would
generally be better if one could obtain new program versions that were compiled
with the newer processor in mind.

c-114

Chapter 5 Target Machine Architecture

5.5.] Keeping the Pipeline Full

Four main problems may cause a pipelined processor to stall:

I. Cache misses. A load instruction or an instruction fetch may miss in the cache.

2. Resource hazards. Two concurrently executing instructions may need to use the
same functional unit at the same time.

3. Data hazards. An instruction may need an operand that has not yet been
produced by an earlier but still executing instruction.

4. Control hazards. Until the outcome (and target) of a branch instruction is
determined, the processor does not know the location from which to fetch
subsequent instructions.

All of these problems are amenable, at least in part, to both hardware and
software solutions. On the hardware side, misses can generally be reduced by
building larger or more highly associative caches.” Resource hazards, likewise, can
be addressed by building multiple copies of the various functional units (though
most processors don’t provide enough to avoid all possible conflicts). Misses,
resource hazards, and data hazards can all be addressed by out-of-order execution,
which allows a processor (at the cost of significant design complexity, chip area, and
power consumption) to consider a lengthy “window” of instructions, and make
progress on any of them for which operands and hardware resources are available.

Branches constitute something like 10% of all instructions in typical programs,’
so even a one-cycle stall on every branch could be expected to slow down execution
by 9% on average. On a deeply pipelined machine one might naively expect to stall
for more like five or even ten cycles while waiting for a new program counter to be
computed. To avoid such intolerable delays, most high-performance processors
incorporate hardware to predict the outcome of each branch, based on past behavior,
and to execute speculatively down the predicted path, in a way that can be “rolled
back” in the event of misprediction. To the extent that it predicts correctly, such a
processor can avoid control hazards altogether.

On the software side, the compiler has a major role to play in keeping the pipeline
full. For any given source program, there is an unbounded number of possible
translations into machine code. In general we should prefer shorter translations
over longer ones, but we must also consider the extent to which various transla-
tions will utilize the pipeline. On an in-order processor (one that always executes

5 The degree of associativity of a cache is the number of distinct lines in the cache in which the
contents of a given memory location might be found. In a one-way associative (direct-mapped)
cache, each memory location maps to only one possible line in the cache. If the program uses two
locations that map to the same line, the contents of these two locations will keep evicting each
other, and many misses will result. More highly associative caches are slower, but suffer fewer such
conflicts.

6 This is a very rough number. For the SPEC2000 benchmarks, Hennessy and Patterson report
percentages varying from 1 to 25 [HP17, 3rd ed., pp. 138-139].

5.5.1 Keeping the Pipeline Full ~ ¢-115

instructions in the order they appear in the machine language program), a stall will
inevitably occur whenever a load is followed immediately by an instruction that
needs the loaded value, because even first-level cache requires at least one extra
cycle to respond. A stall may also occur when the result of a slow-to-complete
floating-point operation is needed too soon by another instruction, when two con-
currently executing instructions need the same functional unit in the same cycle, or,
on a superscalar processor, when an instruction that uses a value is executed con-
currently with the instruction that produces it. In all these cases performance may
improve significantly if the compiler chooses a translation in which instructions
appear in a different order.

The general technique of reordering instructions at compile time so as to maxi-
mize processor performance is known as instruction scheduling. On an in-order
processor the goal is to identify a valid order that will minimize pipeline stalls at
run time. To achieve this goal the compiler requires a detailed model of the pipeline.
On an out-of-order processor the goal is simply to maximize instruction-level par-
allelism (ILP): the degree to which unrelated instructions lie near one another in
the instruction stream (and thus are likely to fall within the processor’s instruction
window). A compiler for such an out-of-order machine may be able to make do
with a less detailed pipeline model. At the same time, it may need to ensure a higher
degree of ILP, since out-of-order execution tends to be found on machines with
several pipelines.

DESIGN & IMPLEMENTATION

5.4 Delayed branch instructions

Successful pipelining depends on knowing the address of the next instruction
before the current instruction has completed, or has even been fully decoded.
With fixed-size instructions a processor can infer this address easily for straight-
line code, but not for the code that follows a branch. In an attempt to minimize
the impact of branch delays, several early RISC machines provided delayed
branch instructions: with these, the instruction immediately after the branch
would be executed regardless of the outcome of the branch.

Unfortunately, as architects moved to more aggressive, deeply pipelined
processor implementations, the number of cycles required to correctly resolve a
branch became more than one could cover with a single additional instruction.
A few processors were designed with an architecturally visible branch delay of
more than one cycle, but this proved not to be a viable strategy: it was simply
too difficult for the compiler to find enough unrelated instructions to schedule
into the slots. Instead, modern processors invariably rely on a hardware branch
predictor to guess the outcome and targets of branches early, so that the pipeline
can continue execution. That said, even when hardware is able to predict the
outcome of branches, it can be useful for the compiler to do so also, in order to
schedule instructions to minimize load delays on the most likely cross-branch
code paths.

c-116 Chapter 5 Target Machine Architecture

EXAMPLE 5 I 5

Filling a load delay slot

Instruction scheduling can have a major impact on resource and data hazards.
We will consider the topic of instruction scheduling in some detail in Section C-17.6.
In the remainder of the current subsection we focus on the case of loads, where even
an access that hits in the cache has the potential to delay subsequent instructions.

Software techniques to reduce the incidence of cache misses typically require
large-scale restructuring of control flow or data layout. Though aggressive optimiz-
ing compilers may reorganize loops for better cache locality, especially in scientific
programs (a topic we will consider in Section C-17.7.2), most simply assume that
every memory access will hit in the L1 cache, and aim to tolerate the delay that
such a hit entails. The hit assumption is generally a good one: most programs on
most machines find their data in (some level of) the cache more than 90% of the
time (often over 99%). The goal of the compiler is to make sure that the pipeline
can continue to operate during the time that it takes the cache to respond.

Consider a load instruction that hits in the L1 cache. The number of cycles that
must elapse before a subsequent instruction can use the result is known as the
load delay. Even the fastest caches induce a one-cycle load delay. If the instruction
immediately after a load attempts to use the loaded value, a one-cycle load penalty
(a pipeline stall) will occur. Longer pipelines can have load delays of two or even
three cycles.

To avoid load penalties (in the absence of out-of-order execution), the compiler
may schedule one or more unrelated instructions into the delay slot(s) between a
load and a subsequent use. In the following code, for example, a simple in-order
pipeline might incur a one-cycle penalty between the second and third instructions:

r2:=r1+r2
r3:=A —— load
r3:=13 +12

If we swap the first two instructions, the penalty goes away:

r3:=A —— load
r2:=r1+r2
3:=r3+1r2

The second instruction gives the first instruction time enough to retrieve A before
it is needed in the third instruction.

To maintain program correctness, an instruction-scheduling algorithm must
respect all dependences among instructions. These dependences come in three
varieties:

Flow dependence (also called true or read-after-write dependence): a later instruc-
tion uses a value produced by an earlier instruction.

Anti-dependence (also called write-after-read dependence): a later instruction
overwrites a value read by an earlier instruction.

Output dependence (also called write-after-write dependence): a later instruction
overwrites a value written by a previous instruction.

EXAMPLE 5 I 6

Renaming registers for
scheduling

5.5.1 Keeping the Pipeline Full c-117

A compiler can often eliminate anti- and output dependences by renaming
registers. In the following, for example, anti-dependences prevent us from moving
either the instruction before the load or the one after the add into the delay slot of
the load:

r3:=r1+3 —— immovable ¥
rn:=A —— load
2:=r1+r2

rt:=3 - immovable?

If we use a different register as the target of the load, however, then either instruction
can be moved:

3:=r1+3 -—movable |, 5:= A ——load
5:=A —— load r3:=r1+3

r2:=r5+r2 becomes 1:=3

r1:=3 —— movable T r2:=r5+r2

The need to rename registers in order to move instructions can increase the num-
ber of registers needed by a given stretch of code. To maximize opportunities
for concurrent execution, out-of-order processor implementations may perform
register renaming dynamically in hardware, as noted in Section C-5.4.3. These im-
plementations possess more physical registers than are visible in the instruction set.
As instructions are considered for execution, any that use the same architectural
register for independent purposes are given separate physical copies on which to
do their work. If a processor does not perform hardware register renaming, then
the compiler must balance the desire to eliminate pipeline stalls against the desire
to minimize the demand for registers (so that they can be used to hold loop indices,
local variables, and other comparatively long-lived values).

DESIGN & IMPLEMENTATION

5.5 Delayed load instructions

In order to enforce the flow dependence between a load of a register and its
subsequent use, a processor must include so-called interlock hardware. To
minimize chip area, several of the very early RISC processors provided this
hardware only in the case of cache misses. The result was an architecturally
visible delayed load instruction similar to the delayed branches discussed in
Sidebar C-5.4. The value of the register targeted by a delayed load was undefined
in the immediately subsequent instruction slot. Filling the delay slot of a delayed
load with an unrelated instruction was thus a matter of correctness, not just of
performance. If a compiler was unable to find a suitable “real” instruction, it
had to fill the delay slot with a no-op (nop). More recent RISC machines have
abandoned delayed loads; their implementations are fully interlocked. Within
processor families old binaries continue to work correctly; the (nop) instructions
are simply redundant.

c-118 Chapter 5 Target Machine Architecture

EXAMPLE 5 I 7

Register allocation for a
simple loop

5.5.2 Register Allocation

A load-store architecture explicitly acknowledges that moving data between reg-
isters and memory is expensive. A store instruction costs a minimum of one
cycle—more if several stores are executed in succession and the memory system
can’t keep up. A load instruction costs a minimum of one or two cycles (depending
on whether the delay slot can be filled), and can cost scores or even hundreds
of cycles in the event of a cache miss. In order to minimize the use of loads and
stores, a good compiler must keep things in registers whenever possible. We saw
an example in Chapter 1: the most striking difference between the “optimized”
code of Example 1.2 and the naive code of Figure 1.7 is the absence in the former
of most of the loads and stores.

Register allocation is typically a two-stage process. In the first stage the compiler
identifies the portions of the abstract syntax tree that represent basic blocks: straight-
line sequences of code with no branches in or out. Within each basic block it assigns
a “virtual register” to each loaded or computed value. In effect, this assignment
amounts to generating code under the assumption that the target machine has an
unbounded number of registers. In the second stage, the compiler maps the virtual
registers of an entire subroutine onto the architectural (hardware) registers, using
the same architectural register when possible to hold different virtual registers at
different times, and spilling virtual registers to memory when there aren’t enough
architectural registers to go around.

We will examine this two-stage process in more detail in Section C-17.8. For
now, we illustrate the ideas with a simple example. Suppose we are compiling a
function that computes the variance o2 of the contents of an n-element vector.
Mathematically,

2 1 —\2 1 2 —2
o = ;Z(xifx) = (an,)x

i

where X ... x,_ are the elements of the vector, and X = 1/n) _, x; is their average.
In pseudocode,

double sum :=0
double squares := 0
forintiin0..n—1
sum +:= Ali]
squares +:= Ali] x Alil
double average := sum/n
return (squares /n) — (average X average)

After some simple code improvements and the assignment of virtual registers,
the assembly language for this function on a modern machine is likely to look
something like Figure C-5.7. This code uses two integer virtual registers (v1 and
v2) and eight floating-point virtual registers (w1-w8). For each of these we can
compute the range over which the value in the register is useful, or live. This range

5.5.2 Register Allocation c-119

1. vl = &A —— pointer to A[1]
2. v2:=n —— count of elements yet to go
3. w1:=0.0 ——sum
4. w2 :=0.0 ——squares
5. goto L2
6. L1: w3:=*v1 —— Ali] (floating point)
7. wl:=wl + w3 ——accumulate sum
8. w4 = w3 X w3
9. w2 = w2 + w4 —— accumulate squares
10. vli:=vl+8 —— 8 bytes per double-word
11. v2:=v2 -1 —— decrement count
12. L2: if v2 > 0 goto L1
13. wb :=wl/n —— average
14. w6 :=w2/n —— average of squares
15. w7 :=wb X wb ——square of average
16. w8 = wb — w7
17. e ——return value in w8

Figure 5.1 Pseudo-assembly code for a vector variance computation.

extends from the point at which the value is defined to the last point at which the
value is used. For register w4, for example, the range is only one instruction long,
from the assignment at line 8 to the use at line 9. For register v1, the range is the
union of two subranges, one that extends from the assignment at line 1 to the use
(and redefinition) at line 10, and another that extends from this redefinition around
the loop to the same spot again.

Once we have calculated live ranges for all virtual registers we can create a
mapping onto the architectural registers. We can use a single architectural register
for two virtual registers only if their live ranges do not overlap. If the number of
architectural registers required is larger than the number available on the machine
(after reserving a few for such special values as the stack pointer), then at various
points in the code we shall have to write (spill) some of the virtual registers to
memory in order to make room for the others.

In our example program, the live ranges for the two integer registers overlap, so
they will have to be assigned to separate architectural registers. Among the floating-
point registers, w1 overlaps with w2-w4, w2 overlaps with w3-w5, w5 overlaps
with w6, and w6 overlaps with w7. There are several possible mappings onto three
architectural floating-point registers, one of which is shown in Figure C-5.8.

Interaction with Instruction Scheduling

From the point of view of execution speed, the code in Figure C-5.8 has at least two
problems. First, of the seven instructions in the loop, nearly half are devoted to
bookkeeping: updating the pointer into the array, decrementing the loop count,
and testing the terminating condition. Second, when run on a pipelined machine
with in-order execution, the code is likely to experience a very high number of
stalls. Exercise C-5.21 explores a first step toward addressing the bookkeeping

c-120 Chapter 5 Target Machine Architecture

EXAMPLE 5 |8

Register allocation and
instruction scheduling

1. rl = &A

2. r2:=n

3. f1:=0.0

4. f2:=0.0

5. goto L2

6. L1: f3:=*r1 ——no delay

7. f1:=11 + 3 —— 1-cycle wait for f3
8. f3:=13 x f3 ——no delay

9. f2 =2 + {3 ——4-cycle wait for f3
10. r:=r1+8 ——no delay
11. r2:=r2-1 ——no delay
12. L2: ifr2 >0 goto L1 ——no delay
13. f1:=f1/n
14. f2:=12/n
15. f1:=11 x f1
16. f1:=f2-11
17. e ——return value in 1

Figure 5.8 The vector variance example with architectural registers assigned. Also shown in
the body of the loop are the number of stalled cycles that can be expected on a simple in-order
pipelined machine, assuming a one cycle penalty for loads, two cycle penalty for floating-point
adds, and four cycle penalty for floating-point multiplies.

overhead. We consider the stalls below, and return to both problems in more detail
in Chapter 17.

We noted in Section C-5.5.1 that floating-point instructions commonly employ
a separate, longer pipeline. Because they take more cycles to complete, there can
be a significant delay before their results are available for use in other instructions.
Suppose that floating-point add and multiply instructions must be followed by two
and four cycles, respectively, of unrelated computation (these are modest figures;
real machines often have longer delays). Also suppose that the result of a load is
not available for a modest one-cycle delay. In the context of our vector variance
example, these delays imply a total of five stalled cycles in every iteration of the loop,
even if the hardware successfully predicts the outcome and target of the branch at
the bottom. Added to the seven instructions themselves, this implies a total of 12
cycles per loop iteration (i.e., per vector element).

By rescheduling the instructions in the loop (Figure C-5.9) we can eliminate all
but one cycle of stall. This brings the total number of cycles per iteration down
to only eight, a reduction of 33%. The savings comes at a cost, however: we now
execute the multiply instruction before the first floating-point add, and must use
an extra architectural register to hold on to the add’s second argument. This effect
is not unusual: instruction scheduling has a tendency to overlap the live ranges of
virtual registers whose ranges were previously disjoint, leading to an increase in
the number of architectural registers required.

On a machine with out-of-order execution, hardware is likely (with the assis-
tance of register renaming) to transform the code of Figure C-5.8 into something

5.5.2 Register Allocation ¢-121

1. rl = &A

2. r2:=n

3. f1:=0.0

4. f2:=0.0

5. goto L2

6. L1: f3:=*r1

7. rm:=r1+8 ——no delay

8. f4 =13 x f3 ——no delay

9. f1:=1 + 13 ——no delay
10. r2:=r2-1 ——no delay
11. f2:=12 + 4 —— 1-cycle wait for f4
12. L2: ifr2 >0 goto L1 ——no delay
13. f1:=f1/n
14. f2:=12/n
15. f1:=11 x f1
16. f1:=f2-11
17. e ——return value in 1

Figure 5.9 The vector variance example after instruction scheduling. All but one cycle of delay
has been eliminated. Because we have hoisted the multiply above the first floating-point add,
however, we need an extra architectural floating-point register.

akin to Figure C-5.9 automatically on the fly, at the expense of chip area and density.
As of this writing, there is still considerable debate in the architecture commu-
nity regarding the relative merits of static (compiler) and dynamic (hardware)
scheduling.

The Impact of Subroutine Calls

The register allocation scheme outlined above depends implicitly on the compiler
being able to see all of the code that will be executed over a given span of time
(e.g., an invocation of a subroutine). But what if that code includes calls to other
subroutines? If a subroutine were called from only one place in the program,
we could allocate registers (and schedule instructions) across both the caller and
the callee, effectively treating them as a single unit. Most of the time, however,
a subroutine is called from many different places in a program, and the code
improvements that we should like to make in the context of one caller may be
different from the ones that we should like to make in the context of a different
caller. For small, simple subroutines, the compiler may actually choose to expand
a copy of the code at each call site, despite the resulting increase in code size. This
inlining of subroutines can be an important form of code improvement, particularly
for object-oriented languages, which tend to have very large numbers of very small
subroutines.

When inlining is not an option, most compilers treat each subroutine as an
independent unit. When a body of code for which we are attempting to perform
register allocation makes a call to a subroutine, there are several issues to consider:

c-122

Chapter 5 Target Machine Architecture

Parameters must generally be passed. Ideally, we should like to pass them in
registers.

Any registers that the callee will use internally, but which contain useful values
in the caller, must be spilled to memory and then reread when the callee returns.

Any variables that the callee might load from memory, but which have been
kept in a register in the caller, must be written back to memory before the call,
so that the callee will see the current value.

Any variables to which the callee might store a value in memory, but which
have been kept in a register in the caller, must be reread from memory when
the callee returns, so that the caller will see the current value.

If the caller does not know exactly what the callee might do (this is often the
case—the callee might not have been compiled yet), then the compiler must make
conservative assumptions. In particular, it must assume that the callee reads and
writes every variable visible in its scope. The caller must write any such variable
back to memory prior to the call, if its current value is (only) in a register. If it
needs the value of such a variable after the call, it must reread it from memory.

With perfect knowledge of both the caller and the callee, we could arrange across
subroutine calls to save and restore precisely those registers that are both in use in
the caller and needed (for internal purposes) in the callee. Without this knowledge,
we can choose either for the caller to save and restore the registers it is using, before
and after the call, or for the callee to save and restore the registers it needs internally,
at the top and bottom of the subroutine. In practice it is conventional to choose the
latter alternative for at least some static subset of the register set, for two reasons.
First, while a subroutine may be called from many locations, there is only one copy
of the subroutine itself. Saving and restoring registers in the callee, rather than
the caller, can save substantially on code size. Second, because many subroutines
(particularly those that are called most frequently) are very small and simple, the
set of registers used in the callee tends, on average, to be smaller than the set in
use in the caller. We will look at subroutine calling sequences and inlining in more
detail in Sections 9.2 and 9.2.4, respectively.

DESIGN & IMPLEMENTATION

5.6 In-line subroutines

Subroutine inlining presents, to a large extent, a classic time-space tradeoftf.
Inlining one instance of a subroutine replaces a relatively short calling sequence
with a subroutine body that is typically significantly longer. In return, it avoids
the execution overhead of the calling sequence, enables the compiler to perform
code improvement across the call without performing interprocedural analysis,
and typically improves locality, especially in the L1 instruction cache.

5.6 Summary and Concluding Remarks ~ c-123

‘/CHECK YOUR UNDERSTANDING

39. List the four principal causes of pipeline stalls.

40. What is a pipeline interlock?

41. What is a delayed branch instruction? A delayed load instruction?

4. What is instruction scheduling? Why is it important on modern machines?

43. What is the impact of out-of-order execution on compile-time instruction
scheduling?

44. What is branch prediction? Why is it important?
45. Describe the interaction between instruction scheduling and register allocation.
46. What is the live range of a register?

41. What is subroutine inlining? What benefits does it provide? When is it possible?
What is its cost?

48. Summarize the impact of subroutine calls on register allocation.

Summary and Concluding Remarks

Computer architecture has a major impact on the sort of code that a compiler
must generate, and the sorts of code improvements it must effect in order to obtain
good performance. Since the early 1980s, the trend in processor design has been
to equip the compiler with more and more knowledge of the low-level details of
processor implementation, so that the generated code can use the implementation
to its fullest. This trend has blurred the traditional dividing line between processor
architecture and implementation: while a compiler can generate correct code
based on an understanding of the architecture alone, it cannot generate fast code
unless it understands the implementation as well. In effect, timing issues that were
once hidden in the microcode of microprogrammed processors (and which made
microprogramming an extremely difficult and arcane craft) have been exported
into the compiler.

In the first several sections of this chapter we surveyed the organization of mem-
ory and the representation of data (including integer and floating-point arithmetic),
the variety of typical assembly language instructions, and the evolution of modern
architectures and implementations. As examples we compared the x86 and Arm.
In the final section we discussed why compiling for modern machines is hard. The
principal tasks include instruction scheduling, to accommodate load and branch
delays and multiple functional units, and register allocation, to minimize memory
traffic. We noted that there is often a tension between these tasks, and that both
are made more difficult by frequent subroutine calls.

c-124

Chapter 5 Target Machine Architecture

The past two decades have seen a shake-up in RISC machines. IBM continues
to invest in Power for the server market, but its PowerPC consumer line has faded
away. MIPS Technologies announced in 2021 that it was transitioning development
to the RISC-V ISA. Fujitsu, the last remaining manufacturer of SPARC processors,
has announced plans to phase out production in the late 2020s. Arm has been
the big winner, with processors designed and sold by Apple, Motorola, nVidia,
Qualcomm, Texas Instruments, and scores of others. The RISC-V open standard,
originally developed at UC-Berkeley, also appears to be on the rise, with adoptions
by a variety of commercial vendors; it will be interesting to watch its development
over the coming years.

Despite the burden of backward compatibility, the x86 overwhelmingly domi-
nates the desktop and server market, thanks to the marketing prowess of IBM, Intel,
and Microsoft, and to the engineering prowess of Intel and AMD, which have suc-
cessfully decoupled the architecture from the implementation. IBM’s z architecture,
for its part, enjoys a virtual monopoly in mainframe computing. While modern
implementations of the x86 and z continue to implement their full respective ISAs,
they do so on top of pipelined implementations with uncompromised performance.

With growing demand for a 64-bit address space, a major battle developed
in the x86 world around the turn of the century. Intel undertook to design an
entirely new (and very different) instruction set for their IA-64/Itanium line of
processors. They provided an x86 compatibility mode, but it was implemented in a
separate portion of the processor—essentially a Pentium subprocessor embedded
in the corner of the chip. Application writers who wanted speed and address space
enhancements were expected to migrate to the new instruction set. AMD took a
more conservative approach, at least from a marketing perspective, and developed
a backward-compatible 64-bit extension to the x86 instruction set; its AMD64
processors provided a much smoother upward migration path. In response to
market demand, Intel subsequently licensed the AMDG64 architecture (which it
now calls Intel 64) for use in its 64-bit x86 processors. In designing its 64-bit
extension, Arm has taken an intermediate approach: its 32- and 64-bit modes share
registers, and have essentially the same instructions, but use different instruction
encodings.

As Arm pushes for a growing slice of the laptop/desktop/server market, it will
come into increasingly direct competition with the x86, likely resulting in ever
more diverse implementations and instruction set extensions. In the development
of extensions, both the CISC and RISC “design philosophies” are still very much
alive [SW94]. The “CISC-ish” philosophy suggests that newly available resources
(e.g., increases in chip area) be used to implement functions that would otherwise
have to occur in software, such as decimal arithmetic, security, virtualization, or
transactional synchronization (to be discussed in Section 13.4.5). The “RISC-ish”
philosophy suggests that resources be used to improve the speed of existing func-
tions, for example by increasing cache size, employing faster but larger functional
units, increasing the number of cores, or deepening the pipeline and decreasing
cycle time. Depending on one’s point of view, “data-parallel” accelerators for

5.7 Exercises c-125

graphics, compression, encryption, transcoding, deep learning, and the like may
be consistent with either philosophy.

Heat dissipation and limited ILP are increasingly the main constraints on single-
core performance. In response, all the major vendors have developed multicore
versions of their respective architectures. It seems increasingly likely that future
processors will be highly heterogeneous, with multiple implementation strategies—
and even multiple instruction set architectures—deployed in different cores, each
optimized for a different sort of program. Such processors will certainly require
new compiler techniques. At perhaps no time in the past 30 years has the future of
microarchitecture been in so much flux. However it all turns out, it is clear that
processor and compiler technology will continue to evolve together.

Exercises

5. Consider sending a message containing a string of integers over the Inter-
net. What problems may occur if the sending and receiving machines have
different “endian-ness”? How might you solve these problems?

5.1 What is the largest positive number in 32-bit two’s complement arithmetic?
What is the smallest (largest magnitude) negative number? Why are these
numbers not the additive inverse of each other?

53 (a) Express the decimal number 1234 in hexadecimal.
(b) Express the unsigned hexadecimal number 0x2ae in decimal.

() Interpret the hexadecimal bit pattern 0x££d9 as a 16-bit 2’s complement
number. What is its decimal value?

(d) Suppose that n is a negative integer represented as a k-bit 2’s complement
bit pattern. If we reinterpret this bit pattern as an unsigned number, what
is its numeric value as a function of n and k?

54 What will the following C code print on a little-endian machine like the x86?
What will it print on a big-endian machine?

unsigned short n = 0x1234; // 16 bits
unsigned char *p = (unsigned char *) &n;
printf ("%d\n", *p);

55 (a) Suppose we have a machine with hardware support for 8-bit integers.
What is the decimal value of 11011001,, interpreted as an unsigned
quantity? As a signed, two’s complement quantify? What is its two’s
complement additive inverse?

(b) What is the 8-bit binary sum of 11011001, and 10010001,? Does this
sum result in overflow if we interpret the addends as unsigned numbers?
As signed two’s complement numbers?

c-126

Chapter 5 Target Machine Architecture

5.6

5.1

5.8

5.9

5.10

5.11

5.12

5.13

5.14

In Section C-5.2.1 we observed that overflow occurs in two’s complement
addition when we add two non-negative numbers and obtain an apparently
negative result, or add two negative numbers and obtain an apparently non-
negative result. Prove that it is equivalent to say that a two’s complement
addition operation overflows if and only if the carry into most significant
place differs from the carry out of most significant place. (This trivial check
is the one typically performed in hardware.)

In Section C-5.2.1 we claimed that a two’s complement integer could be
correctly negated by flipping the bits, adding 1, and discarding any carry out
of the left-most place. Prove that this claim is correct.

What is the single-precision IEEE floating-point number whose value is
closest to 6.022 x 10%%?

Occasionally one sees a C program in which a double-precision floating-point
number is used as an integer counter. Why might a programmer choose to
do this?

Modern compilers often find they don’t have enough registers to hold all the
things they’d like to hold. At the same time, VLSI technology has reached
the point at which there is room on a chip to hold many more registers than
are found in the typical ISA. Why are we still using instruction sets with only
32 integer registers? Why don’t we make, say, 64 or 128 of them visible to the
programmer?

Some early RISC machines (SPARC among them) provided a “multiply step”
instruction that performed one iteration of the standard shift-and-add algo-
rithm for binary integer multiplication. Speculate as to the rationale for this
instruction.

Why do you think RISC machines standardized on 32-bit instructions? Why
not some smaller or larger length? Aside from Arm and RISC-V, why not
multiple lengths?

Consider a machine with three condition codes, N, Z, and O. N indicates
whether the most recent arithmetic operation produced a negative result. Z
indicates whether it produced a zero result. O indicates whether it produced
a result that cannot be represented in the available precision for the numbers
being manipulated (i.e., outside the range 0..2" for unsigned arithmetic,
—2m=1 2"=1—1 for signed arithmetic). Suppose we wish to branch on
condition A op B, where A and B are unsigned binary numbers, for op €
{<,<,=,%#,>,>}. Suppose we subtract B from A, using two’s complement
arithmetic. For each of the six conditions, indicate the logical combination
of condition-code bits that should be used to trigger the branch. Repeat
the exercise on the assumption that A and B are signed, two’s complement
numbers.

We implied in Section C-5.4.1 that if one adds a new instruction to a non-
pipelined, microcoded machine, the time required to execute that instruction
is (to first approximation) independent of the time required to execute all

5.15

5.16

5.17

5.18

5.19

5.7 Exercises c-127

other instructions. Why is it not strictly independent? What factors could
cause overall execution to become slower when a new instruction is intro-
duced?

Suppose that loads constitute 25% of the typical instruction mix on a certain
machine. Suppose further that 15% of these loads miss in the last level of
on-chip cache, with a penalty of 120 cycles to reach main memory. What is
the contribution of last-level cache misses to the average number of cycles
per instruction? You may assume that instruction fetches always hit in the L1
cache. Now suppose that we add an off-chip (L3 or L4) cache that can satisfy
90% of the misses from the last-level on-chip cache, at a penalty of only 30
cycles. What is the effect on cycles per instruction?

Consider the following code fragment in pseudo-assembly notation:

1. r1 =K

2. 4= &A

3. 6 := &B

4. r2:=r1 x4

5. r3:=r14 +r12

6. r3 = *r3 —— load (register indirect)
7. 5 :=*(r3 + 12) —-load (displacement)
8. r3:=r16 +r2

9. r3 = *r3 —— load (register indirect)
10. r7:=*r3+12) —-load (displacement)
11. r3:=r15+r7

12. S:=1r3 —— store

(a) Give a plausible explanation for this code (what might the corresponding
source code be doing?).

(b) Identify all flow, anti-, and output dependences.

() Schedule the code to minimize load delays on a single-pipeline, in-order
processor.

(d) Canyou do better if you rename registers?

With the development of deeper, more complex pipelines, delayed loads and
branches became significantly less appealing as features of a RISC instruction
set. In later generations, architects eliminated visible load delays but were
unable to do so for branches. Explain.

Some processors, including the Power series and certain members of the x86
family, require one or more cycles to elapse between a condition-determining
instruction and a branch instruction that uses that condition. What options
does a scheduler have for filling such delays?

Branch prediction can be performed statically (in the compiler) or dynam-
ically (in hardware). In the static approach, the compiler guesses which
way the branch will usually go, encodes this guess in the instruction, and
schedules instructions for the expected path. In the dynamic approach, the

c-128

Chapter 5 Target Machine Architecture

5.20

5.21

5.2

5.23

5.24

5.25

hardware keeps track of the outcome of recent branches, notices branches or
patterns of branches that recur, and predicts that the patterns will continue
in the future. Discuss the tradeoffs between these two approaches. What are
their comparative advantages and disadvantages?

Consider a machine with a three-cycle penalty for incorrectly predicted
branches and a zero-cycle penalty for correctly predicted branches. Suppose
that in a typical program 20% of the instructions are conditional branches,
which the compiler or hardware manages to predict correctly 75% of the time.
What is the impact of incorrect predictions on the average number of cycles
per instruction? Suppose the accuracy of branch prediction can be increased
to 90%. What is the impact on cycles per instruction?

Suppose that the number of cycles per instruction would be 1.5 with perfect
branch prediction. What is the percentage slowdown caused by mispredicted
branches? Now suppose that we have a superscalar processor on which the
number of cycles per instruction would be 0.6 with perfect branch prediction.
Now what is the percentage slowdown caused by mispredicted branches?
What do your answers tell you about the importance of branch prediction on
superscalar machines?

Consider the code in Figure C-5.9. In an attempt to eliminate the remaining
delay, and reduce the overhead of the bookkeeping (loop control) instructions,
one might consider unrolling the loop: creating a new loop in which each
iteration performs the work of k iterations of the original loop. Show the
code for k = 2. You may assume that # is even, and that your target machine
supports displacement addressing. Schedule instructions as tightly as you
can. How many cycles does your loop consume per vector element?

Explorations

Skip ahead to Sidebar 7.4 (Decimal types) in the main text. Write algorithms
to convert BCD numbers to binary, and vice versa. Try writing the routines
in assembly language for your favorite machine (if your machine has special
instructions for this purpose, pretend you're not allowed to use them). How
many cycles are required for the conversion?

Is microprogramming an idea that has outlived its usefulness, or are there ap-
plication domains for which it still makes sense to build a microprogrammed
machine? Defend your answer.

If you have access to both CISC and RISC machines, compile a few programs
for both machines and compare the size of the target code. Can you generalize
about the “space penalty” of RISC code?

The Intel IA-64 (Itanium) architecture is neither CISC nor RISC. It belongs to
an architectural family known as long instruction word (LIW) machines (Intel
calls it explicitly parallel instruction set computing [EPIC]). Find an Itanium

5.26

5.21

5.28

5.29

5.30

5.31

5.32

5.9 Bibliographic Notes — c-129

manual or tutorial and learn about the instruction set. Compare and contrast
it with the x86 and Arm instruction sets. Discuss, from a compiler writer’s
point of view, the challenges and opportunities presented by the IA-64.

Research the history of the x86. Learn how it has been extended over the
years. Write a brief paper describing the extensions. Identify the portions of
the instruction set that are still useful today (i.e., are targeted by modern com-
pilers), and the portions that are maintained solely for the sake of backward
compatibility.

If you have access to computers with more than one kind of processor, compile
a few programs on each machine and time their execution. (If possible, use
the same compiler [e.g., gcc] and options on each machine.) Discuss the
factors that may contribute to different run times. How closely do the ratios
of run times mirror the ratios of clock rates? Why don’t they mirror them
exactly?

Branch prediction can be characterized as control speculation: it makes a guess
about the future control flow of the program that saves enough time when
it’s right to outweigh the cost of cleanup when it’s wrong. Some researchers
have proposed the complementary notion of value speculation, in which the
processor would predict the value to be returned by a cache miss, and proceed
on the basis of that guess. What do you think of this idea? How might you
evaluate its potential?

Can speculation be useful in software? How might you (or a compiler or other
tool) be able to improve performance by making guesses that are subject to
future verification, with (software) rollback when wrong? (Hint: Think about
operations that require communication over slow Internet links.)

Translate the high-level pseudocode for vector variance (Example C-5.17)
into your favorite programming language, and run it through your favorite
compiler. Examine the resulting assembly language. Experiment with differ-
ent levels of optimization (code improvement). Discuss the quality of the
code produced.

Try to write a code fragment in your favorite programming language that
requires so many registers that your favorite compiler is forced to spill some
registers to memory (compile with a high level of optimization). How com-
plex does your code have to be?

Experiment with small subroutines in C++ to see how much time can be
saved by expanding them in-line.

Bibliographic Notes

The standard reference in computer architecture is the graduate-level text by Hen-
nessy and Patterson [HP17]. More introductory material can be found in the
undergraduate computer organization text by the same authors [PH20]. Students

c-130

Chapter 5 Target Machine Architecture

without previous assembly language experience may be particularly interested in
the text of Bryant and O’Hallaron [BO16], which surveys computer organization
from the point of view of the systems programmer, focusing in particular on the
correspondence between source-level programs in C and their equivalents in x86
assembly.

The “RISC revolution™ of the early 1980s was spearheaded by three separate
research groups. The first to start (though last to publish [Rad82]) was the 801
group at IBM’s T.]. Watson Research Center, led by John Cocke. IBM’s Power and
PowerPC architectures, though not direct descendants of the 801, take significant
inspiration from it. The second group (and the one that coined the term “RISC”)
was led by David Patterson [PD80, Pat85] at UC Berkeley. The commercial SPARC
architecture is a direct descendant of the Berkeley RISC II design. The third
group was led by John Hennessy at Stanford [HJBG81]. The commercial MIPS
architecture is a direct descendant of the Stanford design.

Much of the history of pre-1980 processor design can be found in the text by
Siewiorek, Bell, and Newell [SBN82]. This classic work contains verbatim reprints
of many important original papers. In the context of RISC processor design, Smith
and Weiss [SW94] contrast the more “RISCy” and “CISCy” design philosophies
in their comparison of implementations of the Power and Alpha architectures.
Hennessy and Patterson’s architecture text includes an appendix that summarizes
the similarities and differences among the major commercial instruction sets [HP17,
App. K]. Current manuals for all the popular commercial processors are available
from their manufacturers.

An excellent treatment of computer arithmetic can be found in Goldberg’s
appendix to the Hennessy and Patterson architecture text [Gol17]. Additional
coverage of floating point can be found in the same author’s 1991 Computing
Surveys article [Gol91]. The IEEE 754 floating-point standard was printed in ACM
SIGPLAN Notices in 1985 [IEE87]. The texts of Muchnick [Muc97] and of Cooper
and Torczon [CT11] are excellent sources of information on instruction scheduling,
register allocation, subroutine optimization, and other aspects of compiling for
modern machines.

