
4Program Semantics

4.6 Attribute Grammars

In this section we examine attribute grammars, an alternate formalism for describ-
ing and implementing the semantics of a programming language. Intuitively, we
can think of attribute grammars as a generalization of action routines in which
the compiler designer no longer needs to specify exactly when to execute each
routine—and in which the execution need not necessarily be interleaved with
parsing. Alternatively, we can think of attribute grammars as a more imperative
alternative to inference rules: instead of providing rules that indicate what can be
inferred about the meaning of nodes in a syntax tree, we provide code to compute
the values of attributes (fields) of tree nodes, either in a syntax tree or in the original
parse tree.

As a starting point, in a parse tree context, consider an LR (bottom-up) grammarEXAMPLE 4.24
Bottom-up CFG for
constant expressions

for arithmetic expressions composed of constants with precedence and associativity,
adapted from Example 2.8:1

E −→ E + T
E −→ E - T
E −→ T
T −→ T * F
T −→ T / F
T −→ F
F −→ - F
F −→ (E)
F −→ const

1 The addition of semantic rules tends to make attribute grammars quite a bit more verbose than
context-free grammars. For the sake of brevity, many of the examples in this section use very short
symbol names: E instead of expr, TT instead of term_tail.

C 49

C 50 Chapter 4 Program Semantics

1. E1 −→ E2 + T ▷ E1.val := sum(E2.val, T.val)

2. E1 −→ E2 - T ▷ E1.val := difference(E2.val, T.val)

3. E −→ T ▷ E.val := T.val

4. T1 −→ T2 * F ▷ T1.val := product(T2.val, F.val)

5. T1 −→ T2 / F ▷ T1.val := quotient(T2.val, F.val)

6. T −→ F ▷ T.val := F.val

7. F1 −→ - F2 ▷ F1.val := additive_inverse(F2.val)

8. F −→ (E) ▷ F.val := E.val

9. F −→ const ▷ F.val := const.val

Figure 4.16 A simple attribute grammar for constant expressions, using the standard arith-
metic operations. Each semantic rule is introduced by a ▷ sign.

This grammar will generate all properly formed constant expressions over the
basic arithmetic operators, but it says nothing about their meaning. To tie these
expressions to mathematical concepts (as opposed to, say, floor tile patterns or
dance steps), we could use inference rules, as discussed in the main text, but we
can also use attributes. In our expression grammar, we associate a val attributeEXAMPLE 4.25

Bottom-up AG for constant
expressions

with each E, T, F, and const in the grammar. The intent is that for any symbol
S, S.val will be the meaning, as an arithmetic value, of the token string derived
from S. We assume that the val of a const is provided to us by the scanner. We
must then invent a set of rules for each production, to specify how the vals of
different symbols are related. The resulting attribute grammar (AG) is shown in
Figure C 4.16.

In this simple grammar, every production has a single rule. We shall see more
complicated grammars later, in which productions can have several rules. The
rules come in two forms. Those in productions 3, 6, 8, and 9 are known as copy
rules; they specify that one attribute should be a copy of another. The other rules
invoke semantic functions (sum, quotient, additive_inverse, etc.). In this example,
the semantic functions are all familiar arithmetic operations. In general, they
can be arbitrarily complex functions specified by the language designer. Each
semantic function takes an arbitrary number of arguments (each of which must
be an attribute of a symbol in the current production—no global variables are
allowed), and each computes a single result, which must likewise be assigned into
an attribute of a symbol in the current production. When more than one symbol
of a production has the same name, subscripts are used to distinguish them. These
subscripts are solely for the benefit of the semantic functions; they are not part of
the context-free grammar itself.

In a strict definition of attribute grammars, copy rules and semantic function
calls are the only two kinds of permissible rules. In our examples we use a ▷ symbol
to introduce each code fragment corresponding to a single rule. In practice, it is
common to allow rules to consist of small fragments of code in some well-defined
notation (e.g., the language in which a compiler is being written), so that simple

4.6.1 Evaluating Attributes C 51

semantic functions can be written out ‘‘in-line.’’ In this relaxed notation, the rule
for the first production in Figure C 4.16 might be simply E1.val := E2.val + T.val. AsEXAMPLE 4.26

Top-down AG to count the
elements of a list

another example, suppose we wanted to count the elements of a comma-separated
list:

L −→ id LT ▷ L.c := 1 + LT.c
LT −→ , L ▷ LT.c := L.c
LT −→ ε ▷ LT.c := 0

Here the rule on the first production sets the c (count) attribute of the left-hand side
to one more than the count of the tail of the right-hand side. Like explicit semantic
functions, in-line rules are not allowed to refer to any variables or attributes outside
the current production. We will relax this restriction when we relate attribute
grammars to action routines in Subsection C 4.6.2.

Neither the notation for semantic functions (whether in-line or explicit) nor the
types of the attributes themselves is intrinsic to the notion of an attribute grammar.
The purpose of the grammar is simply to associate meaning with the nodes of a
parse tree or syntax tree. Toward that end, we can use any notation and types whose
meanings are already well defined. In Examples C 4.25 and C 4.26, we associated
numeric values with the symbols in a CFG—and thus with parse tree nodes—using
semantic functions drawn from ordinary arithmetic. In a compiler or interpreter
for a full programming language, the attributes of tree nodes might include

for an identifier, a reference to information about it in the symbol table
for an expression, its type
for a statement or expression, a reference to corresponding code in the compiler’s
intermediate form
for almost any construct, an indication of the file name, line, and column where
the corresponding source code begins
for any internal node, a list of semantic errors found in the subtree below

For purposes other than translation—for example, in a theorem prover or
machine-independent language definition—attributes might be drawn from the
disciplines of denotational, operational, or axiomatic semantics. Operational se-
mantics were discussed in Section 4.3; interested readers can find references to
other alternatives in the Bibliographic Notes at the end of the chapter.

4.6.1 Evaluating Attributes

The process of evaluating attributes is called annotation or decoration of the parse
tree (it also applies to syntax trees, as we shall see in Section C 4.6.3). Figure C 4.17EXAMPLE 4.27

Decoration of a parse tree shows how to decorate the parse tree for the expression (1 + 3) * 2, using the AG
of Figure C 4.16. Once decoration is complete, the value of the overall expression
can be found in the val attribute of the root of the tree.

C 52 Chapter 4 Program Semantics

8E

T

* F

const

8

4T

F

E)(

T

F

const

E

T

F

const

+

4

4

1

1

1

1

3

3

3

2

2

Figure 4.17 Decoration of a parse tree for (1 + 3) * 2, using the attribute grammar of
Figure C 4.16. The val attributes of symbols are shown in boxes. Curving arrows show the
attribute flow, which is strictly upward in this case. Each box holds the output of a single semantic
rule; the arrow(s) entering the box indicate the input(s) to the rule. At the second level of the
tree, for example, the two arrows pointing into the box with the 8 represent application of the
rule T1.val := product(T2.val, F.val).

Synthesized Attributes

The attribute grammar of Figure C 4.16 is very simple. Each symbol has at most
one attribute (the punctuation marks have none). Moreover, they are all so-called
synthesized attributes: their values are calculated (synthesized) only in productions
in which their symbol appears on the left-hand side. For annotated parse trees like
the one in Figure C 4.17, this means that the attribute flow—the pattern in which
information moves from node to node—is entirely bottom-up.

An attribute grammar in which all attributes are synthesized is said to be S-
attributed. The arguments to semantic functions in an S-attributed grammar are
always attributes of symbols on the right-hand side of the current production,
and the return value is always placed into an attribute of the left-hand side of the
production. Tokens (terminals) often have intrinsic properties (e.g., the character-
string representation of an identifier or the value of a numeric constant); in a
compiler these are synthesized attributes initialized by the scanner.

4.6.1 Evaluating Attributes C 53

Inherited Attributes

When we considered the construction of syntax trees during top-down parsing
(Example 4.6 and Figure 4.6), we found that we needed to place action routines
within the right-hand sides of productions, so that the left operands of an arithmetic
operator could be passed into the subtree that would contain the right operand.
In a similar vein—and for similar reasons—we will encounter situations in which
attribute values will need to be calculated when their symbol is on the right-hand
side of the current production. Such attributes are said to be inherited. They allow
contextual information to flow into a symbol from above or from the side, so
that the rules of that production can be enforced in different ways (or generate
different values) depending on surrounding context. Symbol table information
is commonly passed from symbol to symbol by means of inherited attributes.
Inherited attributes of the root of the parse tree can also be used to represent
the external environment (characteristics of the target machine, command-line
arguments to the compiler, etc.).

As a simple example of inherited attributes, consider the following fragment ofEXAMPLE 4.28
Top-down CFG and parse
tree for subtraction

an LL(1) expression grammar (here covering only subtraction):

expr −→ const expr_tail
expr_tail −→ - const expr_tail | ε

For the expression 9 - 4 - 3, we obtain the following parse tree:

ε

expr

9

4

expr_tail

expr_tail-

3 expr_tail-

If we want to create an attribute grammar that accumulates the value of the
overall expression into the root of the tree, we have a problem: because subtraction
is left associative, we cannot summarize the right subtree of the root with a single
numeric value. If we want to decorate the tree bottom-up, with an S-attributed
grammar, we must be prepared to describe an arbitrary number of right operands
in the attributes of the top-most expr_tail node (see Exercise C 4.23). This is indeed
possible, but it defeats the purpose of the formalism: in effect, it requires us to
embed the entire tree into the attributes of a single node, and do all the real work
inside a single semantic function at the root.

If, however, we are allowed to pass attribute values not only bottom-up butEXAMPLE 4.29
Decoration with
left-to-right attribute flow

also left-to-right in the tree, then we can pass the 9 into the top-most expr_tail
node, where it can be combined (in proper left-associative fashion) with the 4. The

C 54 Chapter 4 Program Semantics

resulting 5 can then be passed into the middle expr_tail node, combined with the 3
to make 2, and then passed upward to the root:

ε

9 2

5 2

2

9

expr

const

4const

expr_tail

expr_tail-

2 23const expr_tail-

To effect this style of decoration, we need the following attribute rules:EXAMPLE 4.30
Top-down AG for
subtraction expr −→ const expr_tail

▷ expr_tail.st := const.val
▷ expr.val := expr_tail.val

expr_tail1 −→ - const expr_tail2
▷ expr_tail2.st := expr_tail1.st − const.val
▷ expr_tail1.val := expr_tail2.val

expr_tail −→ ε
▷ expr_tail.val := expr_tail.st

In each of the first two productions, the first rule serves to copy the left context
(value of the expression so far) into a ‘‘subtotal’’ (st) attribute; the second rule
copies the final value from the right-most leaf back up to the root. In the expr_tail
nodes of the picture in Example C 4.29, the left box holds the st attribute; the right
holds val.

We can flesh out the grammar fragment of Example C 4.28 to produce a moreEXAMPLE 4.31
Top-down AG for constant
expressions

complete expression grammar, as shown (with shorter symbol names) in Fig-
ure C 4.18. The underlying CFG for this grammar accepts the same language as the
one in Figure C 4.16, but where that one was SLR(1), this one is LL(1). Attribute
flow for a parse of (1 + 3) * 2, using the LL(1) grammar, appears in Figure C 4.19.
As in the grammar fragment of Example C 4.30, the value of the left operand of each
operator is carried into the TT and FT productions by the st (subtotal) attribute.
The relative complexity of the attribute flow arises from the fact that operators are
left associative, but the grammar cannot be left recursive: the left and right operands
of a given operator are thus found in separate productions. Grammars to perform
semantic analysis for practical languages generally require some non-S-attributed
flow.

4.6.1 Evaluating Attributes C 55

1. E −→ T TT
▷ TT.st := T.val ▷ E.val := TT.val

2. TT1 −→ + T TT2
▷ TT2.st := TT1.st + T.val ▷ TT1.val := TT2.val

3. TT1 −→ - T TT2
▷ TT2.st := TT1.st − T.val ▷ TT1.val := TT2.val

4. TT −→ ε
▷ TT.val := TT.st

5. T −→ F FT
▷ FT.st := F.val ▷ T.val := FT.val

6. FT1 −→ * F FT2
▷ FT2.st := FT1.st × F.val ▷ FT1.val := FT2.val

7. FT1 −→ / F FT2
▷ FT2.st := FT1.st ÷ F.val ▷ FT1.val := FT2.val

8. FT −→ ε
▷ FT.val := FT.st

9. F1 −→ - F2
▷ F1.val := − F2.val

10. F −→ (E)
▷ F.val := E.val

11. F −→ const
▷ F.val := const.val

Figure 4.18 An attribute grammar for constant expressions based on an LL(1) CFG. In this
grammar several productions have two semantic rules.

Attribute Flow

Just as a context-free grammar does not specify how it should be parsed, an attribute
grammar does not specify the order in which attribute rules should be invoked. Put
another way, both notations are declarative: they define a set of valid parse trees, but
they don’t say how to build or decorate them. Among other things, this means that
the order in which attribute rules are listed for a given production is immaterial;
attribute flow may require them to execute in any order. If, in Figure C 4.18, we
were to reverse the order in which the rules appear in productions 1, 2, 3, 5, 6,
and/or 7 (listing the rule for symbol.val first), it would be a purely cosmetic change;
the grammar would not be altered.

We say an attribute grammar is well defined if its rules determine a unique set
of values for the attributes of every possible parse tree. An attribute grammar is
noncircular if it never leads to a parse tree in which there are cycles in the attribute
flow graph—that is, if no attribute, in any parse tree, ever depends (transitively)
on itself. (A grammar can be circular and still be well defined if attributes are
guaranteed to converge to a unique value.) As a general rule, practical attribute
grammars tend to be noncircular.

C 56 Chapter 4 Program Semantics

ε

ε

ε ε

ε

8

8 8

4 8

8 8

1 4

1 1

3 3

4 4

8

2

2

3

3

3

4

4

1

1

1

F

E

T

F

()

FT

F

const

const FT

T

TT

T

*

TT

E

FT

F

const

FT

TT+

Figure 4.19 Decoration of a top-down parse tree for (1 + 3) * 2, using the AG of Figure C 4.18. Curving arrows again
indicate attribute flow; the arrow(s) entering a given box represent the application of a single semantic rule. Flow in this case is
no longer strictly bottom-up, but it is still left-to-right. At FT and TT nodes, the left box holds the st attribute; the right holds
val.

An algorithm that decorates parse trees by invoking the rules of an attribute
grammar in an order consistent with the tree’s attribute flow is called a translation
scheme. Perhaps the simplest scheme is one that makes repeated passes over a
tree, invoking any semantic function whose arguments have all been defined, and
stopping when it completes a pass in which no values change. Such a scheme is
said to be oblivious, in the sense that it exploits no special knowledge of either the
parse tree or the grammar. It will halt only if the grammar is well defined. Better
performance, at least for noncircular grammars, may be achieved by a dynamic
scheme that tailors the evaluation order to the structure of a given parse tree—for
example, by constructing a topological sort of the attribute flow graph and then
invoking rules in an order consistent with the sort.

The fastest translation schemes, however, tend to be static—based on an analysis
of the structure of the attribute grammar itself, and then applied mechanically
to any tree arising from the grammar. Like LL and LR parsers, linear-time static
translation schemes can be devised only for certain restricted classes of grammars.
S-attributed grammars, such as the one in Figure C 4.16, form the simplest such
class. Because attribute flow in an S-attributed grammar is strictly bottom-up,

4.6.1 Evaluating Attributes C 57

attributes can be evaluated by visiting the nodes of the parse tree in exactly the
same order that those nodes are generated by an LR-family parser. In fact, the
attributes can be evaluated on the fly during a bottom-up parse, thereby interleaving
parsing and semantic analysis (attribute evaluation).

The attribute grammar of Figure C 4.18 is a good bit messier than that of Fig-
ure C 4.16, but it is still L-attributed: its attributes can be evaluated by visiting the
nodes of the parse tree in a single left-to-right, depth-first traversal (the same order
in which they are visited during a top-down parse—see Figure C 4.19). If we say
that an attribute A.s depends on an attribute B.t if B.t is ever passed to a semantic
function that returns a value for A.s, then we can define L-attributed grammars
more formally with the following two rules: (1) each synthesized attribute of a
left-hand-side symbol depends only on that symbol’s own inherited attributes or
on attributes (synthesized or inherited) of the production’s right-hand-side sym-
bols, and (2) each inherited attribute of a right-hand-side symbol depends only on
inherited attributes of the left-hand-side symbol or on attributes (synthesized or
inherited) of symbols to its left in the right-hand side.

Because L-attributed grammars permit rules that initialize attributes of the
left-hand side of a production using attributes of symbols on the right-hand side,
every S-attributed grammar is also an L-attributed grammar. The reverse is not the
case: S-attributed grammars do not permit the initialization of attributes on the
right-hand side, so there are L-attributed grammars that are not S-attributed.

S-attributed attribute grammars are the most general class of attribute grammars
for which evaluation can be implemented on the fly during an LR parse. L-attributed
grammars are the most general class for which evaluation can be implemented
on the fly during an LL parse. If we interleave semantic analysis (and possibly
intermediate code generation) with parsing, then a bottom-up parser must in
general be paired with an S-attributed translation scheme; a top-down parser must
be paired with an L-attributed translation scheme. (Depending on the structure
of the grammar, it is often possible for a bottom-up parser to accommodate some
non-S-attributed attribute flow; we consider this possibility in Section C 4.6.4.)
If we choose to separate parsing and semantic analysis into separate passes, then
the code that builds the parse tree or syntax tree must still use an S-attributed or
L-attributed translation scheme (as appropriate), but the semantic analyzer can
use a more powerful scheme if desired. There are certain tasks that are easiest to
accomplish with a non-L-attributed scheme. Examples include the generation of
code for ‘‘short-circuit’’ Boolean expressions (to be discussed in Sections 6.1.5
and 6.4.1) and the type checking of mutually recursive functions (Section 3.3.3).

Building a Syntax Tree

If we choose not to interleave parsing and semantic analysis, we still need to
add attribute rules to the context-free grammar, but they serve only to create
the syntax tree—not to enforce semantic rules or generate code. Figures C 4.20EXAMPLE 4.32

Bottom-up and top-down
AGs to build a syntax tree

and C 4.21 contain bottom-up and top-down attribute grammars, respectively, to
build a syntax tree for constant expressions. The attributes in these grammars hold
neither numeric values nor target code fragments; instead they point to nodes

C 58 Chapter 4 Program Semantics

E1 −→ E2 + T
▷ E1.ptr := bin_op(E2.ptr, ‘‘+’’, T.ptr)

E1 −→ E2 - T
▷ E1.ptr := bin_op(E2.ptr, ‘‘−’’, T.ptr)

E −→ T
▷ E.ptr := T.ptr

T1 −→ T2 * F
▷ T1.ptr := bin_op(T2.ptr, ‘‘×’’, F.ptr)

T1 −→ T2 / F
▷ T1.ptr := bin_op(T2.ptr, ‘‘÷’’, F.ptr)

T −→ F
▷ T.ptr := F.ptr

F1 −→ - F2
▷ F1.ptr := un_op(‘‘+/−’’, F2.ptr)

F −→ (E)
▷ F.ptr := E.ptr

F −→ const
▷ F.ptr := int_lit(const.val)

Figure 4.20 Bottom-up (S-attributed) attribute grammar to construct a syntax tree. The
symbol +/− is used (as it is on calculators) to indicate change of sign.

of the syntax tree. Function int_lit returns a pointer to a newly allocated syntax
tree node containing the value of a constant. Functions un_op and bin_op return
pointers to newly allocated syntax tree nodes containing a unary or binary operator,
respectively, and pointers to the supplied operand(s). Bottom-up and top-down
construction of syntax trees for (1 + 3) * 2 is analogous to that of Figures 4.5
and 4.8, respectively, in the main text.

4.6.2 Action Routines and Attribute Grammars

The astute reader will have noticed the similarity between Figures 4.4 and C 4.20,
and between Figures 4.6 and C 4.21. Indeed, the action routines we introduced
in Section 4.2 are simply an implementation, provided by most parser-generator
tools, of attribute grammars with a manually specified static translation scheme.
Each action routine is a semantic function that the programmer (grammar writer)
instructs the compiler to execute at a particular point in the parse.

One difference between the action routines of Figures 4.4 and 4.6 and the se-
mantic functions of attribute grammars is that the former just return a value, while
the former can set multiple attributes. While some tools (e.g., the University of
Minnesota’s attribute grammar-based Silver system) allow an action routine to
modify multiple attributes, many popular parser generators, including yacc/bison

4.6.2 Action Routines and Attribute Grammars C 59

E −→ T TT
▷ TT.st := T.ptr
▷ E.ptr := TT.ptr

TT1 −→ + T TT2
▷ TT2.st := bin_op(TT1.st, ‘‘+’’, T.ptr)
▷ TT1.ptr := TT2.ptr

TT1 −→ - T TT2
▷ TT2.st := bin_op(TT1.st, ‘‘−’’, T.ptr)
▷ TT1.ptr := TT2.ptr

TT −→ ε
▷ TT.ptr := TT.st

T −→ F FT
▷ FT.st := F.ptr
▷ T.ptr := FT.ptr

FT1 −→ * F FT2
▷ FT2.st := bin_op(FT1.st, ‘‘×’’, F.ptr)
▷ FT1.ptr := FT2.ptr

FT1 −→ / F FT2
▷ FT2.st := bin_op(FT1.st, ‘‘÷’’, F.ptr)
▷ FT1.ptr := FT2.ptr

FT −→ ε
▷ FT.ptr := FT.st

F1 −→ - F2
▷ F1.ptr := un_op(‘‘+/−’’, F2.ptr)

F −→ (E)
▷ F.ptr := E.ptr

F −→ const
▷ F.ptr := int_lit(const.val)

Figure 4.21 Top-down (L-attributed) attribute grammar to construct a syntax tree. Here the
st attribute, like the ptr attribute (and unlike the st attribute of Figure C 4.18), is a pointer to a
syntax tree node.

and JavaCC, provide only the simpler return-value mechanism. In these tools, an
action routine that needs to modify more than one attribute can return a record
with a separate field for each.

3CHECK YOUR UNDERSTANDING

39. What is an attribute grammar?

40. What is the difference between synthesized and inherited attributes?

41. Give two examples of information that is typically passed through inherited
attributes.

C 60 Chapter 4 Program Semantics

42. What is attribute flow?

43. What does it mean for an attribute grammar to be S-attributed? L-attributed?
Noncircular? What is the significance of these grammar classes?

44. What is the difference between a semantic function and an action routine?

4.6.3 Semantic Analysis with Attribute Grammars

In our discussion so far we have used attribute grammars solely to decorate parse
trees. Attribute grammars can also be used, however, to decorate syntax trees.
To define semantic analyses over syntax trees using attribute grammars, we can
simply attach semantic rules to the productions of an abstract grammar. These
rules define the attribute flow of a syntax tree in exactly the same way that semantic
rules attached to the productions of a context-free grammar are used to define the
attribute flow of a parse tree. We will use an abstract grammar in the remainder of
this section to perform static semantic checking. Additional semantic rules could
be used to generate intermediate code.

A complete abstract attribute grammar for our calculator language with typesEXAMPLE 4.33
Abstract AG for the
calculator language with
types

can be constructed using the node classes, variants, and attributes shown in Fig-
ure C 4.22. The grammar itself appears in Figure C 4.23. Once decorated, the
program node at the root of the syntax tree will contain a list, in a synthesized
attribute, of all static semantic errors in the program. (The list will be empty if the
program is free of such errors.) Each stmt or expr node has an inherited attribute
symtab that contains a list, with types, of all identifiers declared to the left in the
tree. Each stmt node also has an inherited attribute errors_in that lists all static
semantic errors found to its left in the tree, and a synthesized attribute errors_out to
propagate the final error list back to the root. Each expr node has one synthesized
attribute that indicates its type and another that contains a list of any static semantic
errors found inside. To avoid cascading messages when an error is found early in

DESIGN & IMPLEMENTATION

4.6 Attribute evaluators
Automatic evaluators based on formal attribute grammars are popular in lan-
guage research projects because they save developer time when the language
definition changes. They are popular in syntax-based editors and incremental
compilers because they save execution time: when a small change is made to a
program, the evaluator may be able to ‘‘patch up’’ tree decorations significantly
faster than it could rebuild them from scratch. For the typical compiler, however,
semantic analysis based on a formal attribute grammar is overkill: it has higher
overhead than action routines or ad-hoc traversal of a syntax tree, and doesn’t
really save the compiler writer that much work.

4.6.3 Semantic Analysis with Attribute Grammars C 61

Attributes
Class of node Variants Inherited Synthesized

program — — location, errors
stmt int_decl, real_decl, symtab, errors_in location, errors_out

assign, read, write, null
expr int_lit, real_lit, symtab location, type, errors

var, bin_op, float, trunc name (var only)

Figure 4.22 Classes of nodes for the abstract attribute grammar of Figure C 4.23. All variants
of a given class have all the class’s attributes.

our pass over the syntax tree, we adopt the technique introduced in Section 4.4.2:
we associate a pseudotype called error with any symbol table entry or expression
for which we have already generated a message.

Though it takes a bit of checking to verify the fact, our attribute grammar is
noncircular and well defined. No attribute is ever assigned a value more than once.
(The helper routines at the end of Figure C 4.23 should be thought of as macros,
rather than semantic functions. For the sake of brevity we have passed them entire
tree nodes as arguments. Each macro calculates the values of two different attributes.
Under a strict formulation of attribute grammars each macro would be replaced by
two separate semantic functions, one per calculated attribute.)

Figure C 4.24 uses the grammar of Figure C 4.23 to decorate the syntax treeEXAMPLE 4.34
Decorating a tree with the
AG of the previous
Example

of Figure 4.2. The pattern of attribute flow appears considerably messier than in
previous examples in this section, but this is simply because type checking is more
complicated than calculating constants or building a syntax tree. Symbol table
information flows along the chain of stmts and down into expr trees. The int_decl
and real_decl nodes add new information; other nodes simply pass the table along.
Ideally, when an undeclared identifier is encountered, we would enter it into the
symbol table with an ‘‘error’’ designation, to suppress further messages about the
same identifier; we have not shown that code here.

Type information is synthesized at var, assign, and expr leaves by looking up an
identifier’s name in the symbol table. The information then propagates upward
within an expression tree, and is used to type-check operators and assignments (the
latter don’t appear in this example). Error messages flow along the chain of stmts
via the errors_in attributes, and then back to the root via the errors_out attributes.
Messages also flow up out of expr trees. Wherever a type check is performed, the
type attribute may be used to help create a new message to be appended to the
growing message list.

In our example grammar we accumulate error messages into a synthesized
attribute of the root of the syntax tree. In an ad hoc attribute evaluator we might be
tempted to print these messages on the fly as the errors are discovered. In practice,
however, particularly in a multipass compiler, it makes sense to buffer the messages,
so they can be interleaved with messages produced by other phases of the compiler,
and printed in program order at the end of compilation.

C 62 Chapter 4 Program Semantics

program −→ stmt
▷ stmt.symtab := null
▷ program.errors := stmt.errors_out
▷ stmt.errors_in := null

stmt1 −→ int id stmt2
▷ declare_name(id.name, stmt1, stmt2, int)
▷ stmt1.errors_out := stmt2.errors_out

stmt1 −→ real id stmt2
▷ declare_name(id.name, stmt1, stmt2, real)
▷ stmt1.errors_out := stmt2.errors_out

stmt1 −→ read id stmt2
▷ stmt2.symtab := stmt1.symtab
▷ if ⟨id.name, ?⟩ ∈ stmt1.symtab

stmt2.errors_in := stmt1.errors_in
else

stmt2.errors_in := stmt1.errors_in + [id.name ‘‘undefined at’’ id.location]
▷ stmt1.errors_out := stmt2.errors_out

stmt1 −→ write expr stmt2
▷ expr.symtab := stmt1.symtab
▷ stmt2.symtab := stmt1.symtab
▷ stmt2.errors_in := stmt1.errors_in + expr.errors
▷ stmt1.errors_out := stmt2.errors_out

stmt1 −→ id := expr stmt2
▷ expr.symtab := stmt1.symtab
▷ stmt2.symtab := stmt1.symtab
▷ if ⟨id.name, A⟩ ∈ stmt1.symtab –– for some type A

if A ̸= error and expr.type ̸= error and A ̸= expr.type
stmt2.errors_in := stmt1.errors_in + [‘‘type clash at’’ :=.location]

else
stmt2.errors_in := stmt1.errors_in + expr.errors

else
stmt2.errors_in := stmt1.errors_in + [id.name ‘‘undefined at’’ id.location]

+ expr.errors
▷ stmt1.errors_out := stmt2.errors_out

null : stmt −→ ε
▷ stmt.errors_out := stmt.errors_in

Figure 4.23 Attribute grammar to decorate an abstract syntax tree for the calculator language
with types. We use square brackets to delimit error messages and pointed brackets to delimit
symbol table entries. Juxtaposition indicates concatenation within error messages; the ‘+’ and ‘−’
operators indicate insertion and removal in lists. We assume that every node has been initialized
by the scanner or by action routines in the parser to contain an indication of the location (line
and column) at which the corresponding construct appears in the source (see Exercise C 4.36).
The ‘?’ symbol is used as a ‘‘wild card’’; it matches any type. (continued)

4.6.3 Semantic Analysis with Attribute Grammars C 63

expr −→ var
▷ if ⟨var.name, A⟩ ∈ expr.symtab –– for some type A

expr.errors := null
expr.type := A

else
expr.errors := [var.name ‘‘undefined at’’ var.location]
expr.type := error

expr −→ n
▷ expr.type := int

expr −→ r
▷ expr.type := real

expr1 −→ expr2 op expr3
▷ expr2.symtab := expr1.symtab
▷ expr3.symtab := expr1.symtab
▷ check_types(expr1, expr2, op, expr3)

expr1 −→ float(expr2)
▷ expr2.symtab := expr1.symtab
▷ convert_type(expr2, expr1, int, real, ‘‘float of non-int’’)

expr1 −→ trunc(expr2)
▷ expr2.symtab := expr1.symtab
▷ convert_type(expr2, expr1, real, int, ‘‘trunc of non-real’’)

Figure 4.23 (continued on next page)

One could convert our attribute grammar into executable code using an au-
tomatic attribute evaluator generator. Alternatively, one could create an ad hoc
evaluator in the form of mutually recursive subroutines (Exercise C 4.35). In the
latter case attribute flow would be explicit in the calling sequence of the routines.
We could then choose if desired to keep the symbol table in global variables, rather
than passing it from node to node through attributes. Most compilers employ the
ad hoc approach.

3CHECK YOUR UNDERSTANDING

45. What patterns of attribute flow can be captured easily with action routines?

46. Some compilers perform all semantic checks and intermediate code genera-
tion in action routines. Others use action routines to build a syntax tree and
then perform semantic checks and intermediate code generation in separate
traversals of the syntax tree. Discuss the tradeoffs between these two strategies.

47. What sort of information do action routines typically keep in global variables,
rather than in attributes?

48. How can a semantic analyzer avoid the generation of cascading error messages?

C 64 Chapter 4 Program Semantics

macro declare_name(name, cur_stmt, next_stmt : syntax_tree_node; t : type)
if ⟨name, ?⟩ ∈ cur_stmt.symtab

next_stmt.errors_in := cur_stmt.errors_in + [‘‘redefinition of’’ name ‘‘at’’ cur_stmt.location]
next_stmt.symtab := cur_stmt.symtab − ⟨name, ?⟩ + ⟨name, error⟩

else
next_stmt.errors_in := cur_stmt.errors_in
next_stmt.symtab := cur_stmt.symtab + ⟨name, t⟩

macro check_types(result, operand1, op, operand2)
if operand1.type = error or operand2.type = error

result.type := error
result.errors := operand1.errors + operand2.errors

else if operand1.type ̸= operand2.type
result.type := error
result.errors := operand1.errors + operand2.errors + [‘‘type clash at’’ op.location]

else
result.type := operand1.type
result.errors := operand1.errors + operand2.errors

macro convert_type(old_expr, new_expr : syntax_tree_node; from_t, to_t : type; msg : string)
if old_expr.type = from_t or old_expr.type = error

new_expr.errors := old_expr.errors
new_expr.type := to_t

else
new_expr.errors := old_expr.errors + [msg ‘‘at’’ old_expr.location]
new_expr.type := error

Figure 4.23 (continued)

4.6.4 Space Management for Attributes

Any attribute evaluation method requires space to hold the attributes of the gram-
mar symbols. In an attribute grammar based on the abstract grammar of explicit
syntax trees, the obvious approach is to store attributes in the nodes of the tree
themselves. In a context-free grammar with action routines, the analogous ap-
proach applies only if we are building an explicit parse tree—and usually we’re not.
This means we need to find a way to keep track of the attributes of symbols we have
seen (or predicted) but not yet finished parsing. The details differ in bottom-up
and top-down parsers.

For a bottom-up parser with an S-attributed grammar, it is straightforward to
maintain an attribute stack that directly mirrors the parse stack: next to every state
number on the parse stack is an attribute record for the symbol we shifted when we
entered that state. Entries in the attribute stack are pushed and popped automati-
cally by the parser driver; space management is not an issue for the writer of action
routines. Complications arise if we try to achieve the effect of inherited attributes,
but these can be accommodated within the basic attribute-stack framework.

For a top-down parser with an L-attributed grammar, we have two principal
options. The first option is automatic, but more complex than for bottom-up

4.6.4 Space Management for Attributes C 65

program

int_decl

read

read_decl

read

write

a

null

real_lit(2.0)

float

bin_op

e

ei

eo

e

s

t

n

= errors_in

= errors_out

= errors

= symtab

= type

= name

s ei eo

s ei eo

s ei eo

s ei eo

s ei eo

s ei eo

n

n

n

n

location attribute not shown

s t e

s t e s t e

s t e s t en

s t en

a

b

b

var(a)

var(b)

bin_op

+

÷

Figure 4.24 Decoration of the syntax tree of Figure 4.2, using the grammar of Figure C 4.23.
Location information, which we assume has been initialized in every node by the parser, contributes
to error messages, but does not otherwise propagate through the tree.

grammars. It still uses an attribute stack, but one that does not mirror the parse
stack, because it must store information about symbols that have already been
parsed. The second option has lower space overhead, and saves time by ‘‘short-
cutting’’ copy rules, but requires action routines to allocate and deallocate space
for attributes explicitly.

In both bottom-up and top-down parsers, it is common for some of the contex-
tual information for action routines to be kept in global variables. The symbol table
in particular is usually global. Rather than pass its full contents through attributes
from one production to the next, we pass an indication of the currently active

C 66 Chapter 4 Program Semantics

1. (
2. (1
3. (F1
4. (T1
5. (E1
6. (E1 +
7. (E1 + 3
8. (E1 + F3
9. (E1 + T3

10. (E4
11. (E4)
12. F4
13. T4
14. T4 *
15. T4 * 2
16. T4 * F2
17. T8
18. E8

Figure 4.25 Parse/attribute stack trace for (1 + 3) * 2, using the grammar of Figure C 4.16.
Subscripts represent val attributes; they are not meant to distinguish among instances of a symbol.

scope. Lookups in the global table then use this scope information to obtain the
right referencing environment.

In this subsection, we consider attribute space management in more detail.
Using bottom-up and top-down grammars for arithmetic expressions, we illustrate
automatic management for both bottom-up and top-down parsers, as well as the
ad hoc option for top-down parsers.

Bottom-Up Evaluation

Figure C 4.25 shows a trace of the parse and attribute stack for (1 + 3) * 2, usingEXAMPLE 4.35
Stack trace for bottom-up
parse, with action routines

the attribute grammar of Figure C 4.16. For the sake of clarity, we show a single,
combined stack for the parser and attribute evaluator, and we omit the CFSM state
numbers.

It is easy to evaluate the attributes of symbols in this grammar, because the
grammar is S-attributed. In an automatically generated parser, such as those pro-
duced by yacc/bison, the attribute rules associated with the productions of the
grammar in Figure C 4.16 would constitute action routines, to be executed when
their productions are recognized. For yacc/bison, they would be written in C,
with ‘‘pseudostructs’’ to name the attribute records of the symbols in each produc-
tion. Attributes of the left-hand side symbol would be accessed as fields of the
pseudostruct $$. Attributes of right-hand side symbols would be accessed as fields
of the pseudostructs $1, $2, etc. To get from line 9 to line 10, for example, in the
trace of Figure C 4.25, we would use an action routine version of the first rule of
the grammar in Figure C 4.16: $$.val = $1.val + $3.val.

4.6.4 Space Management for Attributes C 67

When a bottom-up action routine is executed, the attribute records for symbols
on the right-hand side of the production can be found in the top few entries of
the attribute stack. The attribute record for the symbol on the left-hand side of
the production (i.e., $$) will not yet lie in the stack: it is the task of the action
routine to initialize this record. After the action routine completes, the parser pops
the right-hand side records off the attribute stack and replaces them with $$. In
yacc/bison, if no action routine is specified for a given production, the default
action is to ‘‘copy’’ $1 into $$. Since $$ will occupy the same location, once pushed,
that $1 occupied before being popped, this ‘‘copy’’ can be effected without doing
any work.

Inherited Attributes. Unfortunately, it is not always easy to write an S-attributedEXAMPLE 4.36
Finding inherited attributes
in ‘‘buried’’ records

grammar. A simple example in which inherited attributes are desirable arises in C
or Fortran-style variable declarations, in which a type name precedes the list of
variable names:

dec −→ type id_list
id_list −→ id
id_list −→ id_list , id

Let us assume that type has a synthesized attribute tp that contains a pointer to
the symbol table entry for the type in question. Ideally, we should like to pass this
attribute into id_list as an inherited attribute, so that we may enter each newly
declared identifier into the symbol table, complete with type indication, as it is
encountered. When we recognize the production id_list −→ id , we know that the
top record on the attribute stack will be the one for id. But we know more than
this: the next record down must be the one for type. To find the type of the new
entry to be placed in the symbol table, we may safely inspect this ‘‘buried’’ record.
Though it does not belong to a symbol of the current production, we can count on
its presence because there is no other way to reach the id_list −→ id production.

Now what about the id in id_list −→ id_list , id? This time the top three
records on the attribute stack will be for the right-hand symbols id, ,, and id_list.
Immediately below them, however, we can still count on finding the entry for
type, waiting for the id_list to be completed so that dec can be recognized. Using
nonpositive indices for pseudostructs below the current production, we can write
action routines as follows:

dec −→ type id_list
id_list −→ id { declare_id ($1.name, $0.tp) }
id_list −→ id_list , id { declare_id ($3.name, $0.tp) }

Records deeper in the attribute stack could be accessed as $–1, $–2, and so on.
While id_list appears in two places in this grammar fragment, both occurrences
are guaranteed to lie above a type record in the attribute stack, the first because it
lies next to type in a right-hand side, and the second by induction, because it is the
beginning of the yield of the first.

C 68 Chapter 4 Program Semantics

Unfortunately, there are grammars in which a symbol that needs inherited
attributes occurs in productions in which the underlying symbols are not the same.
We can still handle inherited attributes in such cases, but only by modifying the
underlying context-free grammar. An example can be found in languages like Perl,EXAMPLE 4.37

Grammar fragment
requiring context

in which the meaning of an expression (and of the identifiers and operators within
it) depends on the context in which that expression appears. Some Perl contexts
expect arrays. Others expect numbers, strings, or Booleans. To correctly analyze an
expression, we must pass the expectations of the context into the expression subtree
as inherited attributes. Here is a grammar fragment that captures the problem:

stmt −→ id := expr
−→ . . .
−→ if expr then stmt

expr −→ . . .

Within the production for expr, the parser doesn’t know whether the surround-
ing context is an assignment or the condition of an if statement. If it is a condition,
then the expected type of the expression is Boolean. If it is an assignment, then
the expected type is that of the identifier on the assignment’s left-hand side. This
identifier can be found two records below the current production in the attribute
stack.

Semantic Hooks. To allow these cases to be treated uniformly, we can addEXAMPLE 4.38
Semantic hooks for context semantic hook, or ‘‘marker’’ symbols to the grammar. Semantic hooks generate ε,

and thus do not alter the language defined by the grammar; their only purpose is
to hold inherited attributes:

stmt −→ id := A expr
−→ . . .
−→ if B expr then stmt

A −→ ε { $$.tp := $–1.tp }
B −→ ε { $$.tp := Boolean }
expr −→ . . . { if $0.tp = Boolean then . . .}

Since the epsilon production for a semantic hook can provide an action routine,
it is tempting to think of semantic hooks as a general technique to insert action
routines in the middle of bottom-up productions. Unfortunately this is not the
case: semantic hooks can be used only in places where the parser can be sure that
it is in a given production. Placing a semantic hook anywhere else will break the
‘‘LR-ness’’ of the grammar, causing the parser generator to reject the modified
grammar. Consider the following example:EXAMPLE 4.39

Semantic hooks that break
an LR CFG 1. stmt −→ l_val := expr

2. −→ id args
3. l_val −→ id quals

4.6.4 Space Management for Attributes C 69

4. quals −→ quals . id
5. −→ quals (expr_list)
6. −→ ε
7. args −→ (expr_list)
8. −→ ε

An l-value in this grammar is a ‘‘qualified’’ identifier: an identifier followed by
optional array subscript and record field qualifiers.2 We have assumed that the
language follows the notation of Fortran and Ada, in which parentheses delimit
both procedure call arguments and array subscripts. In the case of procedure calls,
it would be natural to want an action routine to pass the symbol-table index of the
subroutine into the argument list as an inherited attribute, so that it can be used to
check the number and types of arguments:

stmt −→ id A args
A −→ ε { $$.proc_index := lookup ($0.name) }

If we try this, however, we will run into trouble, because the procedure call

foo(1, 2, 3);

and the array element assignment

foo(1, 2, 3) := 4;

begin with the same sequence of tokens. Until it sees the token after the closing
parenthesis, the parser cannot tell whether it is working on production 1 or pro-
duction 2. The presence of A in production 2 will therefore lead to a shift-reduce
conflict; after seeing an id, the parser will not know whether to recognize A or
shift (.

Left Corners. In general, the right-hand side of a production in a context-free
grammar is said to consist of the left corner and the trailing part. In the left corner we
cannot be sure which production we are parsing; in the trailing part the production
is uniquely determined. In an LL(1) grammar, the left corner is always empty. In
an LR(1) grammar, it can consist of up to the entire right-hand side. Semantic
hooks can safely be inserted in the trailing part of a production, but not in the left
corner. Yacc/bison recognizes this fact explicitly by allowing action routines toEXAMPLE 4.40

Action routines in the
trailing part

be embedded in right-hand sides. It automatically converts the production

2 In general, an l-value in a programming language is anything to which a value can be assigned (i.e.,
anything that can appear on the left-hand side of an assignment). From a low-level point of view,
this is basically an address. An r-value is anything that can appear on the right-hand side of an
assignment. From a low-level point of view, this is a value that can be stored at an address. We will
discuss l-values and r-values further in Section 6.1.2.

C 70 Chapter 4 Program Semantics

S −→ α { your code here } β

to

S −→ α A β
A −→ ε { your code here }

for some new, distinct symbol A. If the action routine is not in the trailing part,
the resulting grammar will not be LALR(1), and yacc/bison will produce an error
message.

In our procedure call and array subscript example, we cannot place a semanticEXAMPLE 4.41
Left factoring in lieu of
semantic hooks

hook before the args of production 2 because this location is in the left corner. If we
wish to look up a procedure name in the symbol table before we parse the arguments,
we will need to combine the productions for statements that can begin with an
identifier, in a manner reminiscent of the left factoring discussed in Section 2.3.2:

stmt −→ id A quals assign_opt
A −→ ε { $$.id_index := lookup ($0.name) }
quals −→ quals . id

−→ quals (expr_list)
−→ ε

assign_opt −→ := expr
−→ ε

This change eliminates the shift-reduce conflict, but at the expense of combining
the entire grammar subtrees for procedure call arguments and array subscripts. To
use the modified grammar we shall have to write action routines for quals that work
for both kinds of constructs, and this can be a major nuisance. Users of LR-family
parser generators often find that there is a tension between the desire for grammar
clarity and parsability on the one hand and the need for semantic hooks to set
inherited attributes on the other.

Top-Down Evaluation

Top-down parsers, as discussed in Chapter 2, come in two principal varieties: recur-
sive descent and table driven. Attribute management in recursive descent parsers
is almost trivial: inherited attributes of symbol foo take the form of parameters
passed into the parsing routine named foo; synthesized attributes are the return
parameters. These synthesized attributes can then be passed as inherited attributes
to symbols later in the current production, or returned as synthesized attributes of
the current left-hand side.

Attribute space management for automatically generated top-down parsers is
somewhat more complex. Because they allow action routines at arbitrary locations
in a right-hand side, top-down parsers avoid the need to modify the grammar in
order to insert semantic hooks. (Of course, because they must have empty left
corners, top-down grammars can be harder to write in the first place.) Because the
parse stack describes the future, instead of the past, we cannot employ an attribute

4.6.4 Space Management for Attributes C 71

E −→ T { TT.st := T.val }1 TT { E.val := TT.val }2

TT1 −→ + T { TT2.st := TT1.st + T.val }3 TT2 { TT1.val := TT2.val }4

TT1 −→ - T { TT2.st := TT1.st − T.val }5 TT2 { TT1.val := TT2.val }6

TT −→ ε { TT.val := TT.st }7

T −→ F { FT.st := F.val }8 FT { T.val := FT.val }9

FT1 −→ * F { FT2.st := FT1.st × F.val }10 FT2 { FT1.val := FT2.val }11

FT1 −→ / F { FT2.st := FT1.st ÷ F.val }12 FT2 { FT1.val := FT2.val }13

FT −→ ε { FT.val := FT.st }14

F1 −→ - F2 { F1.val := − F2.val }15

F −→ (E) { F.val := E.val }16

F −→ const { F.val := C.val }17

Figure 4.26 LL(1) grammar for constant expressions, with action routines. The boldface
superscripts are for reference in Figure C 4.27.

stack that simply mirrors the parse stack. Our two principal options are to equip
the parser with a (more complicated) algorithm for automatic space management,
or to require action routines to manage space explicitly.

Automatic Management. Automatic management of attribute space for top-
down parsing is more complicated than it is for bottom-up parsing. It is also more
space intensive. We can still use an attribute stack, but it has to contain all of the
symbols in all of the productions between the root of the (hypothetical) parse tree
and the current point in the parse. All of the right-hand side symbols of a given
production are adjacent in the stack; the left-hand side is buried in the right-hand
side of a deeper (closer to the root) production.

Figure C 4.26 contains an LL(1) grammar for constant expressions, with actionEXAMPLE 4.42
Operation of an LL
attribute stack

routines. Figure C 4.27 uses this grammar to trace the operation of a top-down
attribute stack on the sample input (1 + 3) * 2. The left-hand column shows the
parse stack. The right-hand column shows the attribute stack. Three global pointers
index into the attribute stack. One (shown as an ‘‘arrow-boxed’’ L in the trace)
identifies the record in the attribute stack that holds the attributes of the left-hand
side symbol of the current production. The second (shown as an arrow-boxed R in
the trace) identifies the first symbol on the right-hand side of the production. L
and R allow the action routines to find the attributes of the symbols of the current
production. The third pointer (shown as an arrow-boxed N in the trace) identifies
the first symbol within the right-hand side that has not yet been completely parsed.
It allows the parser to update L correctly when a production is predicted.

At any given time, the attribute stack contains all symbols of all productions on
the path between the root of the parse tree and the symbol currently at the top of
the parse stack. Figure C 4.28 identifies these symbols graphically at the point in
Figure C 4.27 immediately above the eight elided lines. Symbols to the left in the
parse tree have already been reclaimed; those to the right have yet to be allocated.

C 72 Chapter 4 Program Semantics

E $ E?

T 1TT 2 : $ E? T? TT?,?

F 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,?

(E) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?)
E) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?)
T 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,?

F 8 FT 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,? F? FT?,?

C 17 : 8 FT 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,? F? FT?,? C1
17 : 8 FT 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,? F? FT?,? C1
: 8 FT 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,? F1 FT?,? C1
8 FT 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,? F1 FT?,?

FT 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,? F1 FT1,?
14 : 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,? F1 FT1,?
: 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,? F1 FT1,1
9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,? F1 FT1,1
: 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT?,? F1 FT1,1
1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT?,?

TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,?

+T 3TT 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,? + T? TT?,?

T 3TT 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,? + T? TT?,?

F 8 FT 9 : 3TT 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,? + T? TT?,? F? FT?,?

C 17 : 8 FT 9 : 3TT 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,? + T? TT?,? F? FT?,? C3

⟨ eight lines omitted ⟩
3TT 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,? + T3 TT?,?

TT 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,? + T3 TT4,?
7 : 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,? + T3 TT4,?
: 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,? + T3 TT4,4
4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,? + T3 TT4,4
: 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,4 + T3 TT4,4
2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,4
:) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E4) T1 TT1,4

) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E4)
16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E4)
: 8 FT 9 : 1TT 2 : $ E? T? TT?,? F4 FT?,? (E4)
8 FT 9 : 1TT 2 : $ E? T? TT?,? F4 FT?,?

FT 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,?

* F 10 FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F? FT?,?

F 10 FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F? FT?,?

C 17 : 10 FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F? FT?,? C2
17 : 10 FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F? FT?,? C2
: 10 FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F2 FT?,? C2
10 FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F2 FT?,?

FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F2 FT8,?

⟨ six lines omitted ⟩
1TT 2 : $ E? T8 TT?,?

TT 2 : $ E? T8 TT8,?
7 : 2 : $ E? T8 TT8,?
: 2 : $ E? T8 TT8,8
2 : $ E? T8 TT8,8
: $ E8 T8 TT8,8

$ E8

Figure 4.27 Trace of the parse stack (left) and attribute stack (right) for (1 + 3) * 2, using the grammar (and action
routine numbers) of Figure C 4.26. Subscripts in the attribute stack indicate the values of attributes. For symbols with two
attributes, st comes first.

4.6.4 Space Management for Attributes C 73

E

T

T

F

() F

FT

FT

TT

TT

T TT+

E *

const (2)

const (3)

F

Fconst (1)

FT

FTε

ε

ε

ε

ε

Figure 4.28 Productions with symbols currently in the attribute stack during a parse of (1 +
3) * 2 (using the grammar of Figure C 4.26), at the point where we are about to parse the 3.
In Figure C 4.27 this point corresponds to the line immediately above the eight elided lines.

At start-up, the attribute stack contains a record for the start symbol, pointed
at by N. When we push the right-hand side of a predicted production onto the
parse stack, we add an ‘‘end-of-production’’ marker, represented by a colon in the
trace. At the same time, we push records for the right-hand-side symbols onto
the attribute stack. (These are added to the attribute stack; they do not replace the
left-hand side.) Prior to pushing these entries, we save the current L and R pointers
in another stack (not shown). We then set L to the old N, and make R and N point
to the newly pushed right-hand side.

When we see an action symbol at the top of the parse stack (shown in the trace
as a small bold number), we pop it and execute the corresponding action routine.
When we match a terminal at the top of the parse stack, we pop it and move
N forward one record in the attribute stack. When we see an end-of-production
marker at the top of the parse stack, we pop it, set N to the attribute record following
the one currently pointed at by L, pop everything from R forward off of the attribute
stack, and restore the most recently saved values of L and R.

C 74 Chapter 4 Program Semantics

E −→ T TT
TT −→ + T { bin_op (‘‘+’’) } TT
TT −→ - T { bin_op (‘‘−’’) } TT
TT −→ ε
T −→ F FT
FT −→ * F { bin_op (‘‘×’’) } FT
FT −→ / F { bin_op (‘‘÷’’) } FT
FT −→ ε
F −→ - F { un_op (‘‘+/−’’) }
F −→ (E)
F −→ const { push_leaf (cur_tok.val) }

Figure 4.29 Ad hoc management of attribute space in an LL(1) grammar to build a syntax
tree.

It should be emphasized that while the trace is long and tedious, its complexity is
completely hidden from the writer of action routines. Once the space management
routines are integrated with the driver for a top-down parser generator, all the
compiler writer sees is the grammar of Figure C 4.26. When the compiler writer
refers to attributes of the symbol on the left-hand side of a production, the parser
generator will access entry L in the attribute stack; when the compiler writer refers
to attributes of the kth symbol on the right-hand side, the parser generator will
access entry R−k−1. In comparing Figures C 4.25 and C 4.27, one should also
note that reduction and execution of a production’s action routine are shown as a
single step in the LR trace; they are shown separately in the LL trace, making that
trace appear more complex than it really is.

Ad Hoc Management. One drawback of automatic space management for top-
down grammars is the frequency with which the compiler writer must specify copy
routines. Of the 17 action routines in Figure C 4.26, 12 simply move information
from one place to another. The time required to execute these routines can be
minimized by copying pointers, rather than large records, but compiler writers
may still consider the copies a nuisance.

An alternative is to manage space explicitly within the action routines, pushingEXAMPLE 4.43
Ad hoc management of a
semantic stack

and popping an ad hoc semantic stack only when information is generated or
consumed. Using this technique, we can replace the action routines of Figure C 4.26
with the simpler version shown in Figure C 4.29. Variable cur_tok is assumed to
contain the synthesized attributes of the most recently matched token. The semantic
stack contains pointers to syntax tree nodes. The push_leaf routine creates a node
for a specified constant and pushes a pointer to it onto the semantic stack. The
un_op routine pops the top pointer off the stack, makes it the child of a newly
created node for the specified unary operator, and pushes a pointer to that node
back on the stack. The bin_op routine pops the top two pointers off the semantic
stack and pushes a pointer to a newly created node for the specified binary operator.

4.6.4 Space Management for Attributes C 75

When the parse of E is completed, a pointer to a syntax tree describing its yield
will be found in the top-most record on the semantic stack.

The advantage of ad hoc space management is clearly the smaller number of rules
and the elimination of the inherited attributes used to represent left context. The
disadvantage is that the compiler writer must be aware of what is in the semantic
stack at all times, and must remember to push and pop it when appropriate.

One further advantage of an ad hoc semantic stack is that it allows action routines
to push or pop an arbitrary number of records. With automatic space management,
the number of records that can be seen by any one routine is limited by the number
of symbols in the current production. The difference is particularly important in
the case of productions that generate lists. In Example C 4.36 we saw an SLR(1)
grammar for declarations in the style of C and Fortran, in which the type name
precedes the list of identifiers. Here is an LL(1) grammar fragment for a languageEXAMPLE 4.44

Processing lists with an
attribute stack

in the style of Pascal and Ada, in which the variables precede the type:

dec −→ id_list : type
id_list −→ id id_list_tail
id_list_tail −→ , id_list

−→ ε

Without resorting to non-L-attributed flow (see Exercise C 4.41), we cannot
pass the declared type into id_list as an inherited attribute. Instead, we must save
up the list of identifiers and enter them into the symbol table en masse when the
type is finally encountered. With automatic management of space for attributes,
the action routines would look something like this:

dec −→ id_list : type { declare_vars(id_list.chain, type.tp) }
id_list −→ id id_list_tail { id_list.chain := append(id.name, id_list_tail.chain) }
id_list_tail −→ , id_list { id_list_tail.chain := id_list.chain }

−→ ε { id_list_tail.chain := null }

With ad hoc management of space, we can get by without the linked list:EXAMPLE 4.45
Processing lists with a
semantic stack dec −→ { push(marker) }

id_list : type
{ pop(tp)

pop(name)
while name ̸= marker

declare_var(name, tp)
pop(name) }

id_list −→ id { push(cur_tok.name) } id_list_tail
id_list_tail −→ , id_list

−→ ε

Neither automatic nor ad hoc management of attribute space in top-down
parsers is clearly superior to the other. The ad hoc approach eliminates the need

C 76 Chapter 4 Program Semantics

for many copy rules and inherited attributes, and is consequently somewhat more
time and space efficient. It also allows lists to be embedded in the semantic stack.
On the other hand, it requires that the programmer who writes the action routines
be continually aware of what is in the stack and why, in order to push and pop it
appropriately. In the final analysis, the choice is an engineering tradeoff driven by
the particular needs of the project.

3CHECK YOUR UNDERSTANDING

49. Explain how to manage space for synthesized attributes in a bottom-up parser.

50. Explain how to manage space for inherited attributes in a bottom-up parser.

51. Define left corner and trailing part.

52. Under what circumstances can an action routine be embedded in the right-
hand side of a production in a bottom-up parser? Equivalently, under what
circumstances can a marker symbol be embedded in a right-hand side without
rendering the grammar non-LR?

53. Summarize the tradeoffs between automatic and ad hoc management of space
for attributes in a top-down parser.

54. At any given point in a top-down parse, which symbols will have attribute
records in an automatically managed attribute stack?

4Program Semantics

4.8 Exercises

4.22 Basic results from automata theory tell us that the language L = an bn cn =
{ε, abc, aabbcc, aaabbbccc, . . . } is not context free. It can be captured,
however, using an attribute grammar. Give an underlying CFG and a set of
attribute rules that associates a Boolean attribute ok with the root R of each
parse tree, such that R.ok = true if and only if the string corresponding to
the fringe of the tree is in L.

4.23 Write an S-attributed attribute grammar, based on the CFG of Example C 4.28,
that accumulates the value of the overall expression into the root of the tree.
You will need to use dynamic memory allocation so that individual attributes
can hold an arbitrary amount of information.

4.24 Suppose that we want to translate constant expressions into the postfix, or
‘‘reverse Polish’’ notation of logician Jan Łukasiewicz. Postfix notation does
not require parentheses. It appears in stack-based languages such as Postscript,
Forth, and the P-code and Java bytecode intermediate forms mentioned in
Section 1.4. It also served, historically, as the input language of certain hand-
held calculators made by Hewlett-Packard. When given a number, a postfix
calculator would push the number onto an internal stack. When given an
operator, it would pop the top two numbers from the stack, apply the operator,
and push the result. The display would show the value at the top of the stack.
To compute 2 × (15 − 3)/4, for example, one would push 2 E 1 5 E 3 E

- * 4 E / (here E is the ‘‘enter’’ key, used to end the string of digits that
constitute a number).

Using the underlying CFG of Figure C 4.16, write an attribute grammar
that will associate with the root of the parse tree a sequence of postfix cal-
culator button pushes, seq, that will compute the arithmetic value of the
tokens derived from that symbol. You may assume the existence of a function
buttons(c) that returns a sequence of button pushes (ending with E on a

C 77

C 78 Chapter 4 Program Semantics

postfix calculator) for the constant c. You may also assume the existence of a
concatenation function for sequences of button pushes.

4.25 Repeat the previous exercise using the underlying CFG of Figure C 4.18.
4.26 Consider the following grammar for reverse Polish arithmetic expressions:

E −→ E E op | id
op −→ + | - | * | /

Assuming that each id has a synthesized attribute name of type string, and
that each E and op has an attribute val of type string, write an attribute
grammar that arranges for the val attribute of the root of the parse tree to
contain a translation of the expression into conventional infix notation. For
example, if the leaves of the tree, left to right, were ‘‘A A B - * C /’’, then
the val field of the root would be ‘‘((A * (A - B)) / C)’’. As an extra
challenge, write a version of your attribute grammar that exploits the usual
arithmetic precedence and associativity rules to use as few parentheses as
possible.

4.27 To reduce the likelihood of typographic errors, the digits comprising most
credit card numbers are designed to satisfy the so-called Luhn formula, stan-
dardized by ANSI in the 1960s, and named for IBM mathematician Hans
Peter Luhn. Starting at the right, we double every other digit (the second-
to-last, fourth-to-last, etc.). If the doubled value is 10 or more, we add the
resulting digits. We then sum together all the digits. In any valid number the
result will be a multiple of 10. For example, 1234 5678 9012 3456 becomes
2264 1658 9022 6416, which sums to 64, so this is not a valid number. If the
last digit had been 2, however, the sum would have been 60, so the number
would potentially be valid.

Give an attribute grammar for strings of digits that accumulates into the
root of the parse tree a Boolean value indicating whether the string is valid
according to Luhn’s formula. Your grammar should accommodate strings of
arbitrary length.

4.28 Consider the following CFG for floating-point constants, without exponen-
tial notation. (Note that this exercise is somewhat artificial: the language
in question is regular, and would be handled by the scanner of a typical
compiler.)

C −→ digits . digits
digits −→ digit more_digits
more_digits −→ digits | ε
digit −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Augment this grammar with attribute rules that will accumulate the value
of the constant into a val attribute of the root of the parse tree. Your answer
should be S-attributed.

4.8 Exercises C 79

4.29 One potential criticism of the obvious solution to the previous problem is
that the values in internal nodes of the parse tree do not reflect the value,
in context, of the fringe below them. Create an alternative solution that
addresses this criticism. More specifically, create your grammar in such a way
that the val of an internal node is the sum of the vals of its children. Illustrate
your solution by drawing the parse tree and attribute flow for 12.34. (Hint:
You will probably want a different underlying CFG, and non-L-attributed
flow.)

4.30 Consider the following attribute grammar for variable declarations, based on
the CFG of Exercise 2.11:

decl −→ ID decl_tail
▷ decl.t := decl_tail.t
▷ decl_tail.in_tab := insert (decl.in_tab, ID.n, decl_tail.t)
▷ decl.out_tab := decl_tail.out_tab

decl_tail −→ , decl
▷ decl_tail.t := decl.t
▷ decl.in_tab := decl_tail.in_tab
▷ decl_tail.out_tab := decl.out_tab

decl_tail −→ : ID ;
▷ decl_tail.t := ID.n
▷ decl_tail.out_tab := decl_tail.in_tab

Show a parse tree for the string A, B : C;. Then, using arrows and textual
description, specify the attribute flow required to fully decorate the tree.
(Hint: Note that the grammar is not L-attributed.)

4.31 A CFG-based attribute evaluator capable of handling non-L-attributed at-
tribute flow needs to take a parse tree as input. Explain how to build a parse
tree automatically during a top-down or bottom-up parse (i.e., without ex-
plicit action routines).

4.32 Write an LL(1) grammar with action routines and automatic attribute space
management that generates the reverse Polish translation described in Exer-
cise C 4.24.

4.33 (a) Write a context-free grammar for case or switch statements in the style
of Pascal or C. Add semantic functions to ensure that the same label does
not appear on two different arms of the construct.

(b) Replace your semantic functions with action routines that can be evalu-
ated during parsing.

4.34 Write an algorithm to determine whether the rules of an arbitrary attribute
grammar are noncircular. (Your algorithm will require exponential time in
the worst case [JOR75].)

4.35 Rewrite the attribute grammar of Figure C 4.23 in the form of an ad hoc
tree traversal consisting of mutually recursive subroutines in your favorite
programming language. Keep the symbol table in a global variable, rather
than passing it through arguments.

C 80 Chapter 4 Program Semantics

4.36 Augment the attribute grammar of Figure C 4.20, Figure C 4.21 to initialize
a synthesized attribute in every syntax tree node that indicates the location
(line and column) at which the corresponding construct appears in the source
program. You may assume that the scanner initializes the location of every
token.

4.37 Modify the CFG and attribute grammar of Figures 4.1 and C 4.23 to permit
mixed integer and real expressions, without the need for float and trunc.
You will want to add an annotation to any node that must be coerced to the
opposite type, so that the code generator will know to generate code to do
so. Be sure to think carefully about your coercion rules. In the expression
my_int + my_real, for example, how will you know whether to coerce the
integer to be a real, or to coerce the real to be an integer?

4.38 A potential objection to the abstract attribute grammar of Example C 4.33 is
that it repeatedly copies the entire symbol table from one node to another.
In this particular tiny language, it is easy to see that the referencing environ-
ment never shrinks: the symbol table changes only with the addition of new
identifiers. Exploiting this observation, show how to modify the pseudocode
of Figure C 4.23 so that it copies only pointers, rather than the entire symbol
table.

4.39 Your solution to the previous exercise probably doesn’t generalize to lan-
guages with nontrivial scoping rules. Explain how an AG such as that in
Figure C 4.23 might be modified to use a global symbol table similar to the
one described in Section C 3.4.1. Among other things, you should consider
nested scopes, the hiding of names in outer scopes, and the requirement (not
enforced by the table of Section C 3.4.1) that variables be declared before they
are used.

4.40 Repeat Exercise C 4.32 using ad hoc attribute space management. Instead of
accumulating the translation into a data structure, write it to a file on the fly.

4.41 Rewrite the grammar for declarations of Example C 4.44 without the require-
ment that your attribute flow be L-attributed. Try to make the grammar as
simple and elegant as possible (you shouldn’t need to accumulate lists of
identifiers).

4.42 Fill in the missing lines in Figure C 4.27.
4.43 Consider the following grammar with action routines:

params −→ mode ID par_tail
{ params.list := insert(⟨mode.val, ID.name⟩, par_tail.list) }

par_tail −→ , params { par_tail.list := params.list }
−→ { par_tail.list := null }

mode −→ IN { mode.val := IN }
−→ OUT { mode.val := OUT }
−→ IN OUT { mode.val := IN_OUT }

4.8 Exercises C 81

Suppose we are parsing the input IN a, OUT b, and that our compiler
uses an automatically maintained attribute stack to hold the active slice of
the parse tree. Show the contents of this attribute stack immediately before
the parser predicts the production par_tail −→ ε . Be sure to indicate where

and point in the attribute stack. Also show the stack of saved and
values, showing where each points in the attribute stack. You may ignore

the pointer.
4.44 One problem with automatic space management for attributes in a top-down

parser occurs in lists and sequences. Consider for example the following
grammar:

block −→ begin stmt_list end
stmt_list −→ stmt stmt_list_tail
stmt_list_tail −→ ; stmt_list | ε
stmt −→ . . .

After predicting the final statement of an n-statement block, the attribute
stack will contain the following (line breaks and indentation are for clarity
only):

block begin stmt_list end
stmt stmt_list_tail ; stmt_list
stmt stmt_list_tail ; stmt_list
stmt stmt_list_tail ; stmt_list
{ n times }

If the attribute stack is of finite size, it is guaranteed to overflow for some
long but valid block of straight-line code. The problem is especially unfortu-
nate since, with the exception of the accumulated output code, none of the
repeated symbols in the attribute stack contains any useful attributes once its
substructure has been parsed.

Suggest a technique to ‘‘squeeze out’’ useless symbols in the attribute
stack, dynamically. Ideally, your technique should be amenable to automatic
implementation, so it does not constitute a burden on the compiler writer.

Also, suppose you are using a compiler with a top-down parser that em-
ploys an automatically managed attribute stack, but does not squeeze out
useless symbols. What could you do if your program caused the compiler to
run out of stack space? How could you modify your program to ‘‘get around’’
the problem?

4Program Semantics

4.9 Explorations

4.50 One of the most influential applications of attribute grammars was the Cor-
nell Synthesizer Generator [Rep84, RT88]. Learn how the Generator used
attribute grammars not only for incremental update of semantic information
in a program under edit, but also for automatic creation of language based
editors from formal language specifications. How general is this technique?
What applications might it have beyond syntax-directed editing of computer
programs?

4.51 The attribute grammars used in this chapter are all quite simple. Most are
S- or L-attributed. All are noncircular. Are there any practical uses for more
complex attribute grammars? How about automatic attribute evaluators?
Using the Bibliographic Notes as a starting point, conduct a survey of attribute
evaluation techniques. Where is the line between practical techniques and
intellectual curiosities?

4.52 As described in Section C 4.6.4, yacc/bison will refuse to accept action
routines in the left corner of a production. Is there any way around this
problem? Can you imagine implementing an extended version of the tool
that would permit action routines in arbitrary locations? What would be the
challenges? The cost?

4.53 Learn how attribute space is managed in the ANTLR parser generator. How
does it compare to the techniques described in Section C 4.6.4 for top-down
parsing?

C 83

