
3Names, Scopes, and Bindings

3.4 Implementing Scope

For both static and dynamic scoping, a language implementation must keep track
of the name-to-object bindings in effect at each point in the program. The principal
difference is time: with static scope the compiler uses a symbol table to track bindings
at compile time; with dynamic scoping the interpreter or run-time system uses an
association list or central reference table to track bindings at run time.

3.4.1 Symbol Tables

In a language with static scoping, the compiler uses an insert operation to place a
name-to-object binding into the symbol table for each newly encountered declara-
tion. When it encounters the use of a name that should already have been declared,
the compiler uses a lookup operation to search for an existing binding. It is tempt-
ing to try to accommodate the visibility rules of static scoping by performing a
remove operation to delete a name from the symbol table at the end of its scope.
Unfortunately, several factors make this straightforward approach impractical:

The ability of inner declarations to hide outer ones in most languages with nested
scopes means that the symbol table has to be able to contain an arbitrary number
of mappings for a given name. The lookup operation must return the innermost
mapping, and outer mappings must become visible again at end of scope.
Records (structures) and classes have some of the properties of scopes, but do
not share their nicely nested structure. When it sees a record declaration, the
semantic analyzer must remember the names of the record’s fields (recursively, if
records are nested). At the end of the declaration, the field names must become
invisible. Later, however, whenever a variable of the record type appears in
the program text (as in my_rec.field_name), the record fields must suddenly
become visible again for the part of the reference after the dot. In object-oriented
languages, member (field and method) names must become visible throughout

C 29

C 30 Chapter 3 Names, Scopes, and Bindings

the methods of the class, even if (as in C++) the code for the methods can appear
outside the class declaration.
As noted in Section 3.3.3, names are sometimes used before they are declared.
Algol and C, for example, permit forward references to labels. Pascal permits for-
ward references in pointer declarations. Most object-oriented languages permit
forward references to class members. Modula-3 permits forward references of
all kinds.
As noted in Section 3.3.3, C, C++, and Ada distinguish between the declaration
of an object and its definition. Pascal has a similar mechanism for mutually
recursive subroutines. When it sees a declaration, the compiler must remember
any nonvisible details so that it can check the eventual definition for consistency.
This operation is similar to remembering the field names of records and classes.
While it may be desirable to forget names at the end of their scope, and even
to reclaim the space they occupy in the symbol table, information about them
may need to be saved for use by a symbolic debugger (Section 16.3.2). A debug-
ger allows the user to manipulate a running program: starting it, stopping it,
and reading and writing its data. In order to parse high-level commands, the
debugger must have access to the compiler’s symbol table, which the compiler
typically saves in a hidden portion of the final machine-language program.

To accommodate these concerns, most compilers never delete anything fromEXAMPLE 3.45
The LeBlanc-Cook symbol
table

the symbol table. Instead, they manage visibility using enter_scope and leave_

scope operations. Implementations vary from compiler to compiler; the approach
described here is due to LeBlanc and Cook [CL83].

Each scope, as it is encountered, is assigned a serial number. The outermost
scope (the one that contains the predefined identifiers) is given number 0. The
scope containing programmer-declared global names is given number 1. Additional
scopes are given successive numbers as they are encountered. All serial numbers
are distinct; they do not represent the level of lexical nesting, except in as much as
nested subroutines naturally end up with numbers higher than those of surrounding
scopes. If language rules specify that a declaration should be visible only in the
remainder of the current code block (not the preceding portion), we can even
allocate a serial number for each such declaration, to capture the scope that is the
remainder of the block.

All names, regardless of scope, are entered into a single large hash table, keyed
by name. Each entry in the table then contains the symbol name, its category
(variable, constant, type, procedure, field name, parameter, etc.), scope number,
type (a pointer to another symbol table entry), and additional, category-specific
fields.

In addition to the hash table, the symbol table has a scope stack that indicates,
in order, the scopes that compose the current referencing environment. As the
semantic analyzer scans the program, it pushes and pops this stack whenever it
enters or leaves a scope, respectively. Entries in the scope stack contain the scope
number, an indication of whether the scope is closed, and in some cases further
information.

3.4.1 Symbol Tables C 31

procedure lookup(name)
pervasive := best := null
apply hash function to name to find appropriate chain
foreach entry e on chain

if e.name = name –– not something else with same hash value
if e.scope = 0

pervasive := e
else

foreach scope s on scope stack, top first
if s.scope = e.scope

best := e –– closer instance
exit inner loop

elsif best ̸= null and then s.scope = best.scope
exit inner loop –– won’t find better

if s.closed
exit inner loop –– can’t see farther

if best ̸= null
while best is an import or export entry

best := best.real_entry
return best

elsif pervasive ̸= null
return pervasive

else
return null –– name not found

Figure 3.17 LeBlanc-Cook symbol table lookup operation.

To look up a name in the table, we scan down the appropriate hash chain looking
for entries that match the name we are trying to find. For each matching entry, we
scan down the scope stack to see if the scope of that entry is visible. We look no
deeper in the stack than the top-most closed scope. Imports and exports are made
visible outside their normal scope by creating additional entries in the table; these
extra entries contain pointers to the real entries. We don’t have to examine the
scope stack at all for entries with scope number 0: they are pervasive. Pseudocode
for the lookup algorithm appears in Figure C 3.17.

The lower right portion of Figure C 3.18 contains the skeleton of a C++ program.EXAMPLE 3.46
Symbol table for a sample
program

The remainder of the figure shows the configuration of the symbol table for the
referencing environment of the grey arrow shown in function F2. At this point
in the code, the scope stack contains four entries, representing, respectively, the
(anonymous) type of structure S, function F2, namespace (module) M2, and the
global scope. The scope for the anonymous type indicates the specific variable (i.e.,
S) to which names (fields) in this scope belong. The outermost, pervasive scope is
not explicitly represented.

All of the entries for a given name appear on the same hash chain, since the
table is keyed on name. In this example, we assume that hash collisions have placed
M2 on the same chain as the Js, and the anonymous structure type (which will

C 32 Chapter 3 Names, Scopes, and Bindings

// pervasive is scope 0
// outer is scope 1
namespace M1 { // scope 2
 struct { // scope 3
 char X;
 } S;
 ...
}
...
namespace M2 { // scope 4
 using M1::S;
 int J;
 ...
 char F1(int A,
 char B) { // scope 5
 ...

 char J;
 ...

 }
 ...
 void F2(char A) { // scope 6

 S.X = A;

 }
 ...
}

Hash table
Scope stack

Hash
 lin

k
Nam

e
Cate

go
ry

Sco
pe

Typ
e

Other

Closed
? (

NA in
 C++)

Other

—

—

—

—

—

—

—

—

—

—

—

parameters

M1 1

3 struct S

6
4
1

mod

�eld

void 0type

F1 4 (3)subr

J

J

M2

6 (3)var

4var

1mod

A 6 (3)param

S 4 importvar

A 5 (2)

(2)

param

record scope 32type

S 2var

int 0 (2)

(3)

type

char 0type

—X 3 (3)

B 5

(1)

(3) —param

F2 subr 4 parameters

(2)

S.
F2
M2
Globals

Sco
pe

(1)

Figure 3.18 LeBlanc-Cook symbol table for an example program in a language like C++. The scope stack represents the
referencing environment at the grey arrow shown in function F2. For the sake of clarity, the many pointers from type fields to
the symbol table entries for void, int, and char are shown as parenthesized (1)s, (2)s, and (3)s, rather than as arrows.

3.4.1 Symbol Tables C 33

have some arbitrary internal name) on the same chain as the As. Variable S has
an extra entry, to make it directly visible inside M2, as requested by the using
statement. When we are inside F2, a lookup operation on J will find F2’s J; the J
in M2 will be hidden by virtue of F2 being above M2 on the scope stack. The entry
for the anonymous struct type indicates the scope number to be pushed onto
the scope stack while resolving references to fields within objects of that type. The
entry for each function contains the head pointer of a list that links together the
subroutine’s parameters, for use in analyzing calls (additional links of these chains
are not shown). During code generation, many symbol table entries would contain
additional fields, for such information as size and run-time address.

The second column of the scope stack is intended to indicate closed scopes.
While C++ doesn’t have any of these, we can imagine how they would work. For
example, if M2 were closed, then names in the global scope, which appears below M2
in the scope stack, would not be visible at the indicated point in the code. Anything
imported into M2 would be visible, because it would have an extra entry (like that
of S) within M2’s own scope.1 If our language had exports (again, C++ does not),
we would create extra entries in the outer scope, analogous to the ones we create in
inner scopes for imports.

Classes, which we did not use in Figure C 3.18, would be handled much like
a combination of namespaces and structures. Field and method names of the
class would be visible to the class’s methods, much as objects in a namespace are
visible to all the namespace’s code. Moreover, the entry for the class—like that of a
structure type—would indicate the scope to be pushed onto the scope stack when
the compiler has parsed a dot (.) or arrow (->) token and expects the next token
to name a field or method of the class.

It is tempting to suggest extending a LeBlanc-Cook style symbol table to handle
the visibility specifications common in object-oriented languages (e.g., the public,
private, protected keywords of C++, to which we will return in Section 10.2.2),
but this is probably a mistake. For one thing, such an extension would likely be quite
messy. It is easy to make all the names in a scope visible, by pushing that scope onto
the scope stack. It is also relatively easy to make a small number of names visible,
by creating extra entries in other scopes, as we did for imports and exports. An
intermediate option does not immediately present itself. More significantly, when
the programmer attempts to use a field or method inappropriately, we probably want
to generate an error message along the lines of ‘‘method m is private in class foo’’
instead of just ‘‘method name foo not found.’’ This observation suggests employing
a traditional lookup mechanism for class members, followed by a separate check
for visibility in the current context. We consider this possibility in Exercise C 3.27.

1 Recall that the using statement in C++ isn’t an import in the usual sense: it just gives a simpler
(unqualified) name to an already-visible object.

C 34 Chapter 3 Names, Scopes, and Bindings

3.4.2 Association Lists and Central Reference Tables

Pictorial representations of the two principal implementations of dynamic scoping
appear in Figures C 3.19 and C 3.20. Association lists (A-lists) are simple and elegant,
but can be very inefficient. Central reference tables resemble a simplified LeBlanc-
Cook symbol table, without the separate scope stack; they require more work at
scope entry and exit than do association lists, but they make lookup operations
fast.

A-lists are widely used for dictionary abstractions in Lisp; they are supportedEXAMPLE 3.47
A-list lookup in Lisp by a rich set of built-in functions in most Lisp dialects. It is therefore natural for a

simple Lisp interpreter to use an A-list to keep track of name-value bindings, and
even to make this list explicitly visible to the running program. Since bindings are
created when entering a scope, and destroyed when leaving or returning from a
scope, the A-list functions as a stack. When execution enters a scope at run time,
the interpreter pushes bindings for names declared in that scope onto the top of
the A-list. When execution finally leaves a scope, these bindings are removed. To
look up the meaning of a name in an expression, the interpreter searches from
the top of the list until it finds an appropriate binding (or reaches the end of the
list, in which case an error has occurred). Each entry in the list contains whatever
information is needed to perform semantic checks (e.g., type checking, which we
will consider in Section 7.2) and to find variables and other objects that occupy
memory locations. In the left half of Figure C 3.19, the first (top) entry on the A-list
represents the most recently encountered declaration: the I in procedure P. The
second entry represents the J in procedure Q. Below these are the global symbols,
Q, P, J, and I, and (not shown explicitly) any predefined names provided by the
Lisp interpreter.

The problem with using an association list to represent a program’s referencing
environment is that it can take a long time to find a particular entry in the list,
particularly if it represents an object declared in a scope encountered early in the
program’s execution, and now buried deep in the list. A central reference table isEXAMPLE 3.48

Central reference table designed for faster access. It has one slot for every distinct name in the program.
The table slot in turn contains a list (stack) of declarations encountered at run
time, with the most recent occurrence at the beginning of the list. Looking up
a name is now easy: the current meaning is found at the beginning of the list in
the appropriate slot in the table. In the upper part of Figure C 3.20, the first entry
on the I list is the I in procedure P; the second is the global I. If the program is
compiled and the set of names is known at compile time, then each name can have
a statically assigned slot in the table, which the compiled code can refer to directly.
If the program is not compiled, or the set of names is not statically known, then a
hash function will need to be used at run time to find the appropriate slot.

When control enters a new scope at run time, entries must be pushed onto the
beginning of every list in the central reference table whose name is (re)declared
in that scope. When control leaves a scope for the final time, these entries must
be popped. The work involved is somewhat more expensive than pushing and
popping an A-list, but not dramatically more so, and lookup operations are now

3.4.2 Association Lists and Central Reference Tables C 35

Referencing environment A-list

(predefined names)

I, J : integer

procedure P (I : integer)
 . . .

procedure Q
 J : integer
 . . .
 P (J)
 . . .

−− main program
. . .
Q

Referencing environment A-list

(predefined names)

other infoP

other infoJ

other infoI

other infoI

other infoJ

other info

global proc

global var

global var

param

local var

global procQ

other infoP

other infoJ

other infoI

other infoJ

other info

global proc

global var

global var

local var

global procQ

(newest declarations are at this end of the list)

Figure 3.19 Dynamic scoping with an association list. The left side of the figure shows the referencing environment at the
point in the code indicated by the adjacent grey arrow: after the main program calls Q and it in turn calls P. When searching for
I, one will find the parameter at the beginning of the A-list. The right side of the figure shows the environment at the other grey
arrow: after P returns to Q. When searching for I, one will find the global definition.

much faster. In contrast to the symbol table of a compiler for a language with static
scoping, central reference table entries for a given scope do not need to be saved
when the scope completes execution; the space can be reclaimed.

Within the Lisp community, implementation of dynamic scoping via an asso-
ciation list is sometimes called deep binding, because the lookup operation may
need to look arbitrarily deep in the list. Implementation via a central reference
table is sometimes called shallow binding, because it finds the current association
at the head of a given reference chain. Unfortunately, the terms ‘‘deep and shallow
binding’’ are also more widely used for a completely different purpose, discussed
in Section 3.6. To avoid potential confusion, some authors use ‘‘deep and shallow
access’’ [Seb19] or ‘‘deep and shallow search’’ [Fin96] for the implementations of
dynamic scoping.

Closures with Dynamic Scoping

(This subsection is best read after Section 3.6.1.)
If an association list is used to represent the referencing environment of a pro-EXAMPLE 3.49

A-list closures gram with dynamic scoping, the referencing environment in a closure can be
represented by a top-of-stack (beginning of A-list) pointer (Figure C 3.21). When

C 36 Chapter 3 Names, Scopes, and Bindings

(other names)

Central reference table

P

I

Q

J

(each table entry points to the newest declaration of the given name)

I, J : integer

procedure P (I : integer)
 . . .

procedure Q
 J : integer
 . . .
 P (J)
 . . .

−− main program
. . .
Q

other info

other infoother info

global proc

global varparam

other infoglobal proc

other infoother info global varlocal var

(other names)

Central reference table

P

I

Q

J

other info

other info

global proc

global var

other infoglobal proc

other infoother info global varlocal var

Figure 3.20 Dynamic scoping with a central reference table. The upper half of the figure shows the referencing environment
at the point in the code indicated by the upper grey arrow: after the main program calls Q and it in turn calls P. When searching
for I, one will find the parameter at the beginning of the chain in the I slot of the table. The lower half of the figure shows the
environment at the lower grey arrow: after P returns to Q. When searching for I, one will find the global definition.

a subroutine is called through a closure, the main pointer to the referencing envi-
ronment A-list is temporarily replaced by the pointer from the closure, making any
bindings created since the closure was created (P’s I and J in the figure) temporar-
ily invisible. New bindings created within the subroutine (or in any subroutine it
calls) are pushed using the temporary pointer. Because the A-list is represented
by pointers (rather than an array), the effect is to have two lists—one representing
the caller’s referencing environment and the other the temporary referencing envi-
ronment resulting from use of the closure—that share their older entries. When Q
returns to P in our example, the original head of the A-list will be restored, making
P’s I and J visible again.

3.4.2 Association Lists and Central Reference Tables C 37

procedure P(procedure C)
declare I, J
call C

procedure F
declare I

procedure Q
declare J
call F

−− main program
call P(Q)

Referencing environment A-listCentral Stack

main program

P
I, J
C == Q

Q J

I

M

P

Q

F

I

J

J

I

F

Figure 3.21 Capturing the A-list in a closure. Each frame in the stack has a pointer to the
current beginning of the A-list, which the run-time system uses to look up names. When the main
program passes Q to P with deep binding, it bundles its A-list pointer in Q’s closure (dashed
arrow). When P calls C (which is Q), it restores the bundled pointer. When Q elaborates its
declaration of J (and F elaborates its declaration of I), the A-list is temporarily bifurcated.

With a central reference table implementation of dynamic scoping, the creation
of a closure is more complicated. In the general case, it may be necessary to copy
the entire main array of the central table and the first entry on each of its lists.
Space and time overhead may be reduced if the compiler or interpreter is able to
determine that only some of the program’s names will be used by the subroutine in
the closure (or by things that the subroutine may call). In this case, the environment
can be saved by copying the first entries of the lists for only the names that will be
used. When the subroutine is called through the closure, these entries can then
be pushed onto the beginnings of the appropriate lists in the central reference
table. Additional code must be executed to remove them again after the subroutine
returns.

3CHECK YOUR UNDERSTANDING

43. List the basic operations provided by a symbol table.

44. Outline the implementation of a LeBlanc-Cook style symbol table.

45. Why don’t compilers generally remove names from the symbol table at the
ends of their scopes?

C 38 Chapter 3 Names, Scopes, and Bindings

46. Describe the association list (A-list) and central reference table data structures
used to implement dynamic scoping. Summarize the tradeoffs between them.

47. Explain how to implement deep binding by capturing the referencing envi-
ronment A-list in a closure. Why are closures harder to build with a central
reference table?

3Names, Scopes, and Bindings

3.8 Separate Compilation

Probably the most straightforward mechanisms for separate compilation can be
found in module-based languages such as Modula-2, Modula-3, and Ada, which
allow a module to be divided into a declaration part (or header) and an implemen-
tation part (or body). As we noted in Section 3.3.4, the header contains all and
only the information needed by users of the module (or needed by the compiler in
order to compile such a user); the body contains the rest.

As a matter of software engineering practice, a design team will typically define
module interfaces early in the lifetime of a project, and codify these interfaces in
the form of module headers. Individual team members or subteams will then work
to implement the module bodies. While doing so, they can compile their code
successfully using the headers for the other modules. Using preliminary copies of
the bodies, they may also be able to undertake a certain amount of testing.

In a simple implementation, only the body of a module needs to be compiled into
runnable code: the compiler can read the header of module M when compiling the
body of M, and also when compiling the body of any module that uses M. In a more
sophisticated implementation, the compiler can avoid the overhead of repeatedly
scanning, parsing, and analyzing M’s header by translating it into a symbol table,
which is then accessed directly when compiling the bodies of M and its users.
Most Ada implementations compile their module headers. Implementations of
Modula-2 and 3 vary: some work one way, some the other.

As a practical matter, many languages allow the header of a module to be subdi-
vided into a ‘‘public’’ part, which specifies the interface to the rest of the program,
and a ‘‘private’’ part, which is not visible outside the module, but is needed by
the compiler, for example to determine the storage requirements of opaque types.
Ideally, one would include in the header of a module only that information that
the programmer needs to know to use the abstraction(s) that the module provides.
Restricted exports, and the public and private portions of headers, are compro-

C 39

C 40 Chapter 3 Names, Scopes, and Bindings

mises introduced to allow the compiler to generate code in the face of separate
compilation.

At some point prior to execution, modules that have been separately compiled
must be ‘‘glued together’’ to form a single program. This job is the task of the linker.
At the very least, the linker must resolve cross-module references (loads, stores,
jumps) and relocate any instructions whose encoding depends on the location of
certain modules in the final program. Typically it also checks to make sure that users
and implementors of a given interface agree on the version of the header file used
to define that interface. In some environments, the linker may perform additional
tasks as well, including certain kinds of interprocedural (whole-program) code
improvement. We will return to the subject of linking in Chapters 15 and 16.

3.8.1 Separate Compilation in C

The initial version of C was designed at Bell Laboratories around 1970. It has
evolved considerably over the years, but not, for the most part, in the area of sepa-
rate compilation. Here the language remains comparatively primitive. In particular,
there is in general no way for the compiler or the linker to detect inconsistencies
among declarations or uses of a name in different files. The C89 standards com-
mittee introduced a new explanation of separate compilation based on the notion
of linkage, but this served mainly to clarify semantics, not to change them. The
current rules can be summarized as follows (certain details and special cases are
omitted):

If the declaration of a global object (variable or function) contains the word
static, then the object has internal linkage, and is identified with (linked to)
any other internally linked declaration of the same name in the same file.
If the declaration of a function does not contain the keyword static, then it
has external linkage, and is identified with any other (nonstatic) declaration
of the same function in any file of the program. (A function declaration may
consist of just the header.)
If the declaration of a variable contains the keyword extern, then the variable
has the same linkage as any visible, internally or externally linked declaration of
the same name appearing earlier in the file. If there is no earlier declaration, then
the variable has external linkage, and is identified with any other declaration of
the same external variable in any file of the program. In other words, files in the
same program that contain matching external variable declarations actually share
the same variable. A global variable also has external linkage if its declaration
says neither static nor extern.
If an object is declared with both internal and external linkage, the behavior of
the program is undefined.
An object (variable or function) that is externally linked must have a definition
in exactly one file of a program. A variable is defined when it is given an initial

3.8.1 Separate Compilation in C C 41

value, or is declared at the global level without the extern keyword. A function
is defined when its body (code) is given.

Many C implementations prior to C89 relaxed the final rule to permit zero or
one definitions of an external variable; some permitted more than one. In these
implementations, the linker unified multiple definitions, and created an implicit def-
inition for any variable (or set of linked variables) for which the program contained
only declarations.

The ‘‘linkage’’ rules of C89 provide a way to associate names in one file with
names in another file. The rules are most easily understood in terms of their
implementation. Most language-independent linkers are designed to deal with
symbols: character-string names for locations in a machine-language program. The
linker’s job is to assign every symbol a location in the final program, and to embed
the address of the symbol in every machine-language instruction that makes a
reference to it. To do this job, the linker needs to know which symbols can be used
to resolve unbound references in other files, and which are local to a given file. C89
rules suffice to provide this information. For the programmer, however, there is no
formal notion of interface, and no mechanism to make a name visible in some, but
not all files. Moreover, nothing ensures that the declarations of an external object
found in different files will be compatible: it is entirely possible, for example, to
declare an external variable as a multifield record in one file and as a floating-point
number in another. The compiler is not required to catch such errors, and the
resulting bugs can be very difficult to find.

Header Files

Fortunately, C programmers have developed conventions on the use of external
declarations that tend to minimize errors in practice. These conventions rely on
the file inclusion facility of a macro preprocessor. The programmer creates files
in pairs that correspond roughly to the interface and the implementation of a
module. The name of an interface file ends with.h; the name of the corresponding
implementation file ends with .c. Every object defined in the .c file is declared
in the.h file. At the beginning of the.c file, the programmer inserts a directive
that is treated as a special form of comment by the compiler, but that causes the
preprocessor to include a verbatim copy of the corresponding.h file. This inclusion
operation has the effect of placing ‘‘forward’’ declarations of all the module’s objects
at the beginning of its implementation file. Any inconsistencies with definitions
later in the file will result in error messages from the compiler. The programmer
also instructs the preprocessor at the top of each.c file to include a copy of the.h
files for all of the modules on which the.c file depends. As long as the preprocessor
includes identical copies of a given.h file in all the.c files that use its module, no
inconsistent declarations will occur. Unfortunately, it is easy to forget to recompile
one or more.c files when a.h file is changed, and this can lead to very subtle bugs.
Tools like Unix’s make utility help minimize such errors by keeping track of the
dependences among modules.

C 42 Chapter 3 Names, Scopes, and Bindings

Namespaces

Even with the convention of header files, C89 still suffers from the lack of scoping
beyond the level of an individual file. In particular, all global names must be
distinct, across all files of a program, and all libraries to which it links. Some coding
standards encourage programmers to embed a module’s name in the name of each
of its external objects (e.g., scanner_nextSym), but this practice can be awkward,
and is far from universal.

To address this limitation, C++ introduced a namespace mechanism that gener-
alizes the scoping already provided for classes and functions, breaks the tie between
module and compilation unit, and strengthens the interface conventions of.h files.
Any collection of names can be declared inside a namespace:EXAMPLE 3.50

Namespaces in C++
namespace foo {

class foo_type_1; // declaration
...

}

Actual definitions of the objects within foo can then appear in any file:

class foo::foo_type_1 { ... // full definition

Definitions of objects declared in different namespaces can appear in the same file
if desired.

A C++ programmer can access the objects in a namespace using fully qualifiedEXAMPLE 3.51
Using names from another
namespace

names, or by importing (using) them explicitly:

foo::foo_type_1 my_first_obj;

or

using foo::foo_type_1;
...
foo_type_1 my_first_obj;

or

using namespace foo; // import everything from foo
...
foo_type_1 my_first_obj;

There is no notion of export; all objects with external linkage in a namespace are
visible elsewhere if imported or accessed with their qualified name. Note that
linkage remains the foundation for separate compilation: .h files are merely a
convention.

3.8.2 Packages and Automatic Header Inference C 43

3.8.2 Packages and Automatic Header Inference

The separate compilation facilities of Java and C# eliminate.h files. Java introducesEXAMPLE 3.52
Packages in Java a formal notion of module, called a package. Every compilation unit, which may

be a file or (in some implementations) a record in a database, belongs to exactly
one package, but a package may consist of many compilation units, each of which
begins with an indication of the package to which it belongs:

package foo;
public class FooType1 { ...

Unless explicitly declared as public, a class in Java is visible in all and only those
compilation units that belong to the same package.

As in C++, a compilation unit that needs to use classes from another packageEXAMPLE 3.53
Using names from another
package

can access them using fully qualified names, or via name-at-a-time or package-at-
a-time import:

foo.FooType1 myFirstObj;

or

import foo.FooType1;
...
FooType1 myFirstObj;

or

import foo.*; // import everything from foo
...
FooType1 myFirstObj;

When asked to import names from package M, the Java compiler will search for
M in a standard (but implementation-dependent) set of places, and will recompile
it if appropriate (i.e., if only source code is found, or if the target code is out of date).
The compiler will then automatically extract the information that would have been
needed in a C++ .h file or an Ada or Modula-3 header. If the compilation of M
requires other packages, the compiler will search for them as well, recursively.

C# follows Java’s lead in extracting header information automatically from com-
plete class definitions. Its module-level syntax, however, is based on the namespaces
of C++, which allow a single file to contain fragments of multiple namespaces.
There is also no notion of standard search path in C#: to build a complete program,
the programmer must provide the compiler with a complete list of all the files
required.

To mimic the software engineering practice of early header file construction, a
Java or C# design team can create skeleton versions of (the public classes of) its
packages or namespaces, which can then be used, concurrently and independently,
by the programmers responsible for the full versions.

C 44 Chapter 3 Names, Scopes, and Bindings

3.8.3 Module Hierarchies

In Modula and Ada, the programmer can create a hierarchy of modules within a
single compilation unit by means of lexical nesting (module C, for example, may
be declared inside of module B, which in turn is declared inside of module A).
In a similar vein, the Ada 95, Java, or C# programmer can create a hierarchy ofEXAMPLE 3.54

Multipart package names separately compiled modules by means of multipart names:

package A.B is ... -- Ada 95

package A.B; ... // Java

namespace A.B { ... // C#

In these examples package A.B is said to be a child of package A. In Ada 95 and C#
the child behaves as though it had been nested inside of the parent, so that all the
names in the parent are automatically visible. In Java, by contrast, multipart names
work by convention only: there is no special relationship between packages A and
A.B. If A.B needs to refer to names in A, then A must make them public, and A.B
must import them. Child packages in Ada 95 are reminiscent of derived classes in
C++, except that they support a module-as-manager style of abstraction, rather
than a module-as-type style (more on this in sidebar 10.3).

3CHECK YOUR UNDERSTANDING

48. What purpose(s) does separate compilation serve?

49. What does it mean for an external variable to be linked in C?

50. Summarize the C conventions for use of.h and.c files.

51. Describe the difference between a compilation unit and a C++ or C# namespace.

52. Explain why Ada and similar languages separate the header of a module from
its body. Explain how Java and C# get by without.

DESIGN & IMPLEMENTATION

3.12 Separate compilation
The evolution of separate compilation mechanisms from early C and Fortran,
through C++, Modula-3, Ada, and finally Java and C#, reflects a move from an
implementation-centric viewpoint to a more programmer-centric viewpoint.
Interestingly, the ability to have zero definitions of an externally linked variable
in certain early implementations of C is inherited from Fortran: the assembly
language mnemonic corresponding to a declaration without a definition is
.common (for a mechanism known as common blocks in Fortran).

3Names, Scopes, and Bindings

3.10 Exercises

3.24 Assuming a LeBlanc-Cook style symbol table, explain how the compiler finds
the symbol table information (e.g., the type) of a complicated reference such
as my_firm->revenues[1999].

3.25 Show the contents of a LeBlanc-Cook style symbol table that captures the
referencing environment of
(a) function F1 in Figure 3.4.
(b) procedure set_seed in Figure 3.7.

3.26 In Example C 3.45 we suggested that the implementor of a language in which
declarations are visible only in the remainder of the current code block might
choose to introduce a new nested scope for every declaration. This would, of
course, lead to a very deep scope stack. If that turned out to be a performance
problem for the compiler, explain how you might layer a caching mechanism
on top of the standard lookup algorithm to eliminate most of the slow-down.

3.27 Consider the visibility of class members (fields and methods) in an object-
oriented language, as discussed near the end of Section C 3.4.1. Describe
a mechanism that could be used to check visibility after first locating the
member in a more traditional symbol table. (You may want to look ahead to
Section 10.2.2.)

3.28 Show a trace of the contents of the referencing environment A-list during
execution of the program in
(a) Figure 3.9. Assume that a positive value is read at line 8.
(b) Exercise 3.14.

3.29 Repeat the previous exercise for a central reference table.
3.30 Consider the following tiny program in C:

C 45

C 46 Chapter 3 Names, Scopes, and Bindings

void hello() {
printf("Hello, world\n");

}

int main() {
hello();

}

(a) Split the program into two separately compiled files, tiny.c and
hello.c. Be sure to create a header file hello.h and include it cor-
rectly in tiny.c.

(b) Reconsider the program as C++ code. Put the hello function in a
separate namespace, and include an appropriate using declaration in
tiny.c.

(c) Rewrite the program in Java, with main and hello in separate packages.

3.31 Consider the following file from some larger C program:

int a;
extern int b;
static int c;

void foo() {
int a;
static int b;
extern int c;
extern int d;

}

static int b;
extern int c;

For each variable declaration, indicate whether the variable has external
linkage, internal (file-level) linkage, or no linkage (i.e., is local).

3.32 Modula-2 provides no way to divide the header of a module into a public
part and a private part: everything in the header is visible to the users of
the module. Is this a major shortcoming? Are there disadvantages to the
public/private division (e.g., as in Ada)? (For hints, see Section 10.2.)

3Names, Scopes, and Bindings

3.11 Explorations

3.44 Using your favorite compiler, generate assembly language for some simple
programs with debugger support enabled (on a Unix system, this will probably
require the -g and -S command-line switches). Look through the result for
debugger information. Can you decipher any of it? You may want to look
ahead to Section 16.3.2, and to consult a manual for your system’s object file
format (on a modern Unix system, look for documentation on DWARF).

3.45 Learn about the reflection mechanisms of Java, C#, Prolog, Perl, PHP, Tcl,
Python, or Ruby, all of which allow a program to inspect and reason about
its own symbol table at run time. How complete are these mechanisms?
(For example, can a program inspect symbols that aren’t currently in scope?)
What is reflection good for? What uses should be considered good or bad
programming practice? For more ideas, see Section 16.3.1.

3.46 Learn about the typeglob mechanism of Perl, which allows a program to
modify its own symbol table at run time. What are typeglobs good for?
(See Sidebar 14.9 for some initial pointers.)

3.47 Create a C program in which a variable is exported from one file and imported
by another, but the declarations in the files disagree with respect to type. You
should be able to arrange for the program to compile and link successfully,
but behave incorrectly. Try the same thing in Ada or C++. What happens?

3.48 Investigate the use of module hierarchies in the standard libraries of C++,
Java, and C#. How is each organized? How fine grain is the division into
separate headers or packages? Can you suggest an explanation for any major
differences you find?

C 47

