
2Programming Language Syntax

2.3.5 Recovering from Syntax Errors

The main text illustrated the problem of syntax error recovery with a simple exampleEXAMPLE 2.43
Syntax error in C (reprise) in C:

A = B : C + D;

The compiler will detect a syntax error immediately after the B, but it cannot give
up at that point: it needs to keep looking for errors in the remainder of the program.
To permit this, we must modify the input program, the state of the parser, or both,
in a way that allows parsing to continue, hopefully without announcing a significant
number of spurious cascading errors and without missing a significant number of
real errors. The techniques discussed below allow the compiler to search for further
syntax errors. In Chapter 4 we will consider additional techniques that allow it to
search for additional static semantic errors as well.

Panic Mode

Perhaps the simplest form of syntax error recovery is a technique known as panic
mode. It defines a small set of ‘‘safe symbols’’ that delimit clean points in the input.
When an error occurs, a panic mode recovery algorithm deletes input tokens until
it finds a safe symbol, then backs the parser out to a context in which that symbol
might appear. In the earlier example, a recursive descent parser with panic mode
recovery might delete input tokens until it finds the semicolon, return from all
subroutines called from within stmt, and restart the body of stmt itself.

Unfortunately, panic mode tends to be a bit drastic. By limiting itself to a static
set of ‘‘safe’’ symbols at which to resume parsing, it admits the possibility of deleting
a significant amount of input while looking for such a symbol. Worse, if some of
the deleted tokens are ‘‘starter’’ symbols that begin large-scale constructs in the
language (e.g., begin, procedure, while), we shall almost surely see spurious
cascading errors when we reach the end of the construct.

Consider the following fragment of code in an Algol-family language:EXAMPLE 2.44
The problem with panic
mode

C 1

C 2 Chapter 2 Programming Language Syntax

IF a b THEN x;
ELSE y;
END;

When it discovers the error at b in the first line, a panic-mode recovery algorithm
is likely to skip forward to the semicolon, thereby missing the THEN. When the
parser finds the ELSE on line 2 it will produce a spurious error message. When it
finds the END on line 3 it will think it has reached the end of the enclosing structure
(e.g., the whole subroutine), and will probably generate additional cascading errors
on subsequent lines. Panic mode tends to work acceptably only in relatively ‘‘un-
structured’’ languages, such as Basic and (early) Fortran, which don’t have many
‘‘starter’’ symbols.

Phrase-Level Recovery

We can improve the quality of recovery by employing different sets of ‘‘safe’’ sym-
bols in different contexts. Parsers that incorporate this improvement are said to
implement phrase-level recovery. When it discovers an error in an expression, for
example, a phrase-level recovery algorithm can delete input tokens until it reaches
something that is likely to follow an expression—or perhaps that is able to start an
expression, in the hope that what was deleted was an ignorable prefix. This more
local recovery is better than always backing out to the end of the current statement,
because it gives us the opportunity to examine the parts of the statement (and
maybe even the expression) that follow the erroneous tokens.

Niklaus Wirth, the inventor of Pascal, published an elegant implementation ofEXAMPLE 2.45
Phrase-level recovery in
recursive descent

phrase-level recovery for recursive descent parsers in 1976 [Wir76, Sec. 5.9]. The
simplest version of his algorithm depends on the FIRST and FOLLOW sets defined
at the end of Section 2.3.1. If the parsing routine for nonterminal foo discovers an
error at the beginning of its code, it deletes incoming tokens until it finds a member
of FIRST(foo), in which case it proceeds, or a member of FOLLOW(foo), in which
case it returns:

procedure foo()
if not (input_token ∈ FIRST(foo) or (EPS(foo) and input_token ∈ FOLLOW(foo))

report_error() –– print message for the user
repeat

delete_token()
until input_token ∈ (FIRST(foo) ∪ FOLLOW(foo) ∪ {$$})

case input_token of
. . . : . . .
. . . : . . . –– valid starting tokens
. . . : . . .
otherwise return –– error or foo−→ ε

Note that the report_error routine does not terminate the parse; it simply prints
a message and returns. To complete the algorithm, the match routine must be
altered so that it, too, will return after announcing an error, effectively inserting
the expected token when something else appears:

2.3.5 Recovering from Syntax Errors C 3

procedure match(expected)
if input_token = expected

consume_input_token()
else

report_error()

Finally, to simplify the code, the common prefix of the various nonterminal sub-
routines can be moved into an error-checking subroutine:

procedure check_for_error(sym)
if not (input_token ∈ FIRST(sym) or EPS(sym) and input_token ∈ FOLLOW(sym))

report_error()
repeat

delete_token()
until input_token ∈ (FIRST(sym) ∪ FOLLOW(sym) ∪ {$$})

Context-Specific Look-Ahead

Though simple, the recovery algorithm just described has an unfortunate tendency,
when foo−→ ε , to predict one or more epsilon productions when it should really
announce an error right away. This weakness is known as the immediate error
detection problem. It stems from the fact that FOLLOW(foo) is context-independent:
it contains all tokens that may follow foo somewhere in some valid program, but
not necessarily in the current context in the current program. This is basically the
same observation that underlies the distinction between SLR and LALR parsers
(‘‘The Characteristic Finite-State Machine and LR Parsing Variants,’’ Section 2.3.4).

As an example, consider the following incorrect code in our calculator language:EXAMPLE 2.46
Cascading syntax errors

Y := (A * X X*X) + (B * X*X) + (C * X) + D

To a human being, it is pretty clear that the programmer forgot a * in the x3 term of
a polynomial. The recovery algorithm isn’t so smart. In a recursive descent parser
it will see an identifier (X) coming up on the input when it is inside the following
routines:

program
stmt_list
stmt
expr
term
factor
expr
term
factor_tail
factor_tail

Since an id can follow a factor_tail in some programs (e.g., A := B C := D),
the innermost parsing routine will predict factor_tail−→ ε , and simply return. At

C 4 Chapter 2 Programming Language Syntax

that point both the outer factor_tail and the inner term will be at the end of their
code, and they, too, will return. Next, the inner expr will call term_tail, which will
also predict an epsilon production, since an id can follow a term_tail in certain
programs. This will leave the inner expr at the end of its code, allowing it to return.
Only then will we discover an error, when factor calls match, expecting to see a
right parenthesis. Afterward there will be a host of cascading errors, as the input is
transformed into

Y := (A * X)
X := X
B := X*X
C := X

To avoid inappropriate epsilon predictions, Wirth introduced the notion ofEXAMPLE 2.47
Reducing cascading errors
with context-specific
look-ahead

context-specific FOLLOW sets, passed into each nonterminal subroutine as an
explicit parameter. In our example, we would pass id as part of the FOLLOW set for
the initial, outer expr, which is called as part of the production stmt −→ id :=
expr, but not into the second, inner expr, which is called as part of the production
factor −→ (expr) . The nested calls to term and factor_tail will end up being
called with a FOLLOW set whose only member is a right parenthesis. When the
inner call to factor_tail discovers that id is not in FIRST(factor_tail), it will delete
tokens up to the right parenthesis before returning. The net result is a single error
message, and a transformation of the input into

Y := (A * X*X) + (B * X*X) + (C * X) + D

That’s still not the ‘‘right’’ interpretation, but it’s a lot better than it was.
The final version of Wirth’s phrase-level recovery employs one additional heu-

ristic: to avoid cascading errors it refrains from deleting members of a statically
defined set of ‘‘starter’’ symbols (e.g., begin, procedure, (, etc.). These are the
symbols that tend to require matching tokens later in the program. If we see a
starter symbol while deleting input, we give up on the attempt to delete the rest of
the erroneous construct. We simply return, even though we know that the starter
symbol will not be acceptable to the calling routine. With context-specific FOLLOWEXAMPLE 2.48

Recursive descent with full
phrase-level recovery

sets and starter symbols, phrase-level recovery looks like this:

procedure check_for_error(sym, follow_set)
if not (input_token ∈ FIRST(sym) or (EPS(sym) and input_token ∈ follow_set))

report_error()
repeat

delete_token()
until input_token ∈ FIRST(sym) ∪ follow_set ∪ starter_set ∪ {$$}

2.3.5 Recovering from Syntax Errors C 5

procedure expr(follow_set)
check_for_error(expr, follow_set)
case input_token of

. . . : . . .

. . . : . . . valid starting tokens

. . . : . . .
otherwise return

Context-specific FOLLOW sets are tracked dynamically during the parse of
a given input. Initially, in the augmenting production S −→ program $$, the
context-specific FOLLOW set for program is {$$}. Thus when calling the recursive
descent routine for program, we pass {$$} as parameter. Then, within each routine,
we determine the FOLLOW sets to pass to other routines based on whatever comes
next in the current right-hand side, potentially augmented by what was already
passed as the FOLLOW set of the current left-hand side. Specifically, suppose we
are currently executing the recursive descent routine for symbol A, called with
context-specific FOLLOW set S. Suppose further that we have realized (predicted)
that we are in the production A −→ α B β and we are about to call the routine for
symbol B. If β =⇒∗ ε, we will pass FIRST(β) ∪ S as the context-specific FOLLOW
set for B. If β cannot generate ε, we will simply pass FIRST(β).

Exception-Based Recovery in Recursive Descent

An attractive alternative to Wirth’s technique relies on the exception-handling
mechanisms available in many modern languages (we will discuss these mechan-
isms in detail in Section 9.4). Rather than implement recovery for every nonter-
minal in the language (a somewhat tedious task), the exception-based approach
identifies a small set of contexts to which we back out in the event of an error. In
many languages, we could obtain simple, but probably serviceable error recovery
by backing out to the nearest statement or declaration. In the limit, if we choose a
single place to ‘‘back out to,’’ we have an implementation of panic-mode recovery.

The basic idea is to attach an exception handler (a special syntactic construct)EXAMPLE 2.49
Exceptions in a recursive
descent parser

to the blocks of code in which we want to implement recovery:

procedure statement()
try

. . . –– code to parse a statement
except when syntax_error

loop
if next_token ∈ FIRST(statement)

statement() –– try again
return

elsif next_token ∈ FOLLOW(statement)
return

else delete_token()

Code for declaration would be similar. For better-quality repair, we might add
handlers around the bodies of expression, aggregate, or other complex constructs.

C 6 Chapter 2 Programming Language Syntax

To guarantee that we can always recover from an error, we must ensure that all
parts of the grammar lie inside at least one handler.

When we detect an error (possibly nested many procedure calls deep), we
raise a syntax error exception (‘‘raise’’ is a built-in command in languages with
exceptions). The language implementation then unwinds the stack to the most
recent context in which we have an exception handler, which it executes in place of
the remainder of the block to which the handler is attached. For phrase-level (or
panic mode) recovery, the handler can delete input tokens until it sees one with
which it can recommence parsing.

As noted in Section 2.3.1, the ANTLR parser generator takes a CFG as input
and builds a human-readable recursive descent parser. Compiler writers have
the option of generating Java, C#, or C++, all of which have exception-handling
mechanisms. When an ANTLR-generated parser encounters a syntax error, it
throws a MismatchedTokenException or NoViableAltException. By default
ANTLR includes a handler for these exceptions in every nonterminal subroutine.
The handler prints an error message, deletes tokens until it finds something in the
FOLLOW set of the nonterminal, and then returns. The compiler writer can define
alternative handlers if desired on a production-by-production basis.

Error Productions

As a general rule, it is desirable for an error recovery technique to be as language-
independent as possible. Even in a recursive descent parser, which is handwritten
for a particular language, it is nice to be able to encapsulate error recovery in the
check_for_error and match subroutines. Sometimes, however, one can obtain much
better repairs by being highly language specific.

Most languages have a few unintuitive rules that programmers tend to violate inEXAMPLE 2.50
Error production for
‘‘; else’’

predictable ways. In Pascal, for example, semicolons are used to separate statements,
but many programmers think of them as terminating statements instead. Most of
the time the difference is unimportant, since a statement is allowed to be empty. In
the following, for example,

begin
x := (-b + sqrt(b*b -4*a*c)) / (2*a);
writeln(x);

end;

the compiler parses the begin. . . end block as a sequence of three statements, the
third of which is empty. In the following, however,

if d <> 0 then
a := n/d;

else
a := n;

end;

the compiler must complain, since the then part of an if. . . then . . . else con-
struct must consist of a single statement in Pascal. A Pascal semicolon is never

2.3.5 Recovering from Syntax Errors C 7

allowed immediately before an else, but programmers put them there all the time.
Rather than try to tune a general recovery or repair algorithm to deal correctly
with this problem, most Pascal compiler writers modify the grammar: they include
an extra production that allows the semicolon, but causes the semantic analyzer
to print a warning message, telling the user that the semicolon shouldn’t be there.
Similar error productions are used in C compilers to cope with ‘‘anachronisms’’
that have crept into the language as it evolved. Syntax that was valid only in early
versions of C is still accepted by the parser, but evokes a warning message.

Error Recovery in Table-Driven LL Parsers

Given the similarity to recursive descent parsing, it is straightforward to implement
phrase-level recovery in a table-driven top-down parser. Whenever we encounter
an error entry in the parse table, we simply delete input tokens until we find a
member of a statically defined set of starter symbols (including $$), or a member
of the FIRST or FOLLOW set of the nonterminal at the top of the parse stack.1 If
we find a member of the FIRST set, we continue the main loop of the driver. If we
find a member of the FOLLOW set or the starter set, we pop the nonterminal off
the parse stack first. If we encounter an error in match, rather than in the parse
table, we simply pop the token off the parse stack.

But we can do better than this! Since we have the entire parse stack easily
accessible (it was hidden in the control flow and procedure calling sequence of
recursive descent), we can enumerate all possible combinations of insertions and
deletions that would allow us to continue parsing. Given appropriate metrics, we
can then evaluate the alternatives to pick the one that is in some sense ‘‘best.’’

Because perfect error recovery (actually error repair) would require that we
read the programmer’s mind, any practical technique to evaluate alternative ‘‘cor-
rections’’ must rely on heuristics. For the sake of simplicity, most compilers limit
themselves to heuristics that (1) require no semantic information, (2) do not require
that we ‘‘back up’’ the parser or the input stream (i.e., to some state prior to the
one in which the error was detected), and (3) do not change the spelling of tokens
or the boundaries between them. A particularly elegant algorithm that conforms
to these limits was published by Fischer, Milton, and Quiring in 1980 [FMQ80].
As originally described, the algorithm was limited to languages in which programs
could always be corrected by inserting appropriate tokens into the input stream,
without ever requiring deletions. It is relatively easy, however, to extend the al-
gorithm to encompass deletions and substitutions. We consider the insert-only
algorithm first; the version with deletions employs it as a subroutine. We do not
consider substitutions here.2

1 This description uses global FOLLOW sets. If we want to use context-specific look-aheads instead,
we can peek farther down in the stack. A token is an acceptable context-specific look-ahead if it is
in the FIRST set of the second symbol A from the top in the stack or, if it would cause us to predict
A−→ ε , the FIRST set of the third symbol B from the top or, if it would cause us to predict B−→ ε ,
the FIRST set of the fourth symbol from the top, and so on.

C 8 Chapter 2 Programming Language Syntax

The FMQ error-repair algorithm requires the compiler writer to assign an inser-
tion cost C(t) and a deletion cost D(t) to every token t. (Since we cannot change
where the input ends, we have C($$) = D($$) =∞.) In any given error situation,
the algorithm chooses the least cost combination of insertions and deletions that
allows the parser to consume one more token of real input. The state of the parser
is never changed; only the input is modified (rather than pop a stack symbol, the
repair algorithm pushes its yield onto the input stream).

As in phrase-level recovery in a recursive descent parser, the FMQ algorithm
needs to address the immediate error detection problem. There are several ways
we could do this. One would be to use a ‘‘full LL’’ parser, which keeps track of local
FOLLOW sets. Another would be to inspect the stack when predicting an epsilon
production, to see if what lies underneath will allow us to accept the incoming
token. The first option significantly increases the size and complexity of the parser.
The second option leads to a nonlinear-time parsing algorithm. Fortunately, there
is a third option. We can save all changes to the stack (and calls to the semantic
analyzer’s action routines) in a temporary buffer until the match routine accepts
another real token of input. If we discover an error before we accept a real token,
we undo the stack changes and throw away the buffered calls to action routines.
Then we can pretend we recognized the error when a full LL parser would have.

We now consider the task of repairing with only insertions. We begin by extend-
ing the notion of insertion costs to strings in the obvious way: if w = a1a2. . . an , we
have C(w) =

∑n
i=1 C(a i). Using the cost function C, we then build a pair of tables

S and E. The S table is one-dimensional, and is indexed by grammar symbol. For
any symbol X, S(X) is a least-cost string of terminals derivable from X. That is,

S(X) = w ⇐⇒ X =⇒∗ w and ∀x such that X =⇒∗ x , C(w) ≤ C(x)

Clearly S(a) = a ∀ tokens a.
The E table is two-dimensional, and is indexed by symbol/token pairs. For any

symbol X and token a, E(X , a) is the lowest-cost prefix of a in X; that is, the lowest
cost token string w such that X =⇒∗ wax. If X cannot yield a string containing a,
then E(X , a) is defined to be a special symbol ?? whose insertion cost is∞. If X
= a, or if X =⇒∗ ax, then E(X , a) = ε, where C(ε) = 0.

To find a least-cost insertion that will repair a given error, we execute the functionEXAMPLE 2.51
Insertion-only repair in
FMQ

find_insertion, shown in Figure C 2.31. The function begins by considering the
least-cost insertion that will allow it to derive the input token from the symbol
at the top of the stack (there may be none). It then considers the possibility of
‘‘deleting’’ that top-of-stack symbol (by inserting its least-cost yield into the input
stream) and deriving the input token from the second symbol on the stack. It

2 A substitution can always be effected as a deletion/insertion pair, but we might want ideally to
give it special consideration. For example, we probably want to be cautious about deleting a left
square bracket or inserting a left parenthesis, since both of these symbols must be matched by
something later in the input, at which point we are likely to see cascading errors. But substituting
a left parenthesis for a left square bracket is in some sense more plausible, especially given the
differences in array subscript syntax in different programming languages.

2.3.5 Recovering from Syntax Errors C 9

function find_insertion(a : token) : string
–– assume that the parse stack consists of symbols Xn ,. . . X2, X1,
–– with Xn at top-of-stack
ins := ??
prefix := ε
for i in n . .1

if C(prefix) ≥ C(ins)
–– no better insertion is possible
return ins

if C(prefix . E(X i , a)) < C(ins)
–– better insertion found
ins := prefix . E(X i , a)

prefix := prefix . S(X i)
return ins

Figure 2.31 Outline of a function to find a least-cost insertion that will allow the parser to
accept the input token a. The dot character (.) is used here for string concatenation.

function find_repair() : ⟨string, int⟩
–– assume that the parse stack consists of symbols Xn ,. . . X2, X1,
–– with Xn at top-of-stack,
–– and that the input stream consists of tokens a1, a2, a3, . . .
i := 0 –– number of tokens we’re considering deleting
best_ins := ??
best_del := 0
loop

cur_ins := find_insertion(a i+1)
if C(cur_ins) + D(a1. . . a i) < C(best_ins) + D(a1. . . abest_del)

–– better repair found
best_ins := cur_ins
best_del := i

i +:= 1
if D(a1. . . a i) > C(best_ins) + D(a1. . . abest_del)

–– no better repair is possible
return ⟨best_ins, best_del⟩

Figure 2.32 Outline of a function to find a least-cost combination of insertions and deletions
that will allow the parser to accept one more token of input.

continues in this fashion, considering ways to derive the input token from ever
deeper symbols on the stack, until the cost of inserting the yields of the symbols
above exceeds the cost of the cheapest repair found so far. If it reaches the bottom
of the stack without finding a finite-cost repair, then the error cannot be repaired
by insertions alone.

To produce better-quality repairs, and to handle languages that cannot be re-EXAMPLE 2.52
FMQ with deletions paired with insertions only, we need to consider deletions. As we did with the

insert cost vector C, we extend the deletion cost vector D to strings of tokens in

C 10 Chapter 2 Programming Language Syntax

the obvious way. We then embed calls to find_insertion in a second loop, shown
in Figure C 2.32. This loop repeatedly considers deleting more and more tokens,
each time calling find_insertion on the remaining input, until the cost of deleting
additional tokens exceeds the cost of the cheapest repair found so far. The search
can never fail; it is always possible to find a combination of insertions and deletions
that will allow the end-of-file token to be accepted. Since the algorithm may need
to consider (and then reject) the option of deleting an arbitrary number of tokens,
the scanner must be prepared to peek an arbitrary distance ahead in the input
stream and then back up again.

The FMQ algorithm has several desirable properties. It is simple and efficient
(given that the grammar is bounded in size, we can prove that the time to choose a
repair is bounded by a constant). It can repair an arbitrary input string. Its decisions
are locally optimal, in the sense that no cheaper repair can allow the parser to make
forward progress. It is table-driven and therefore fully automatic. Finally, it can be
tuned to prefer ‘‘likely’’ repairs by modifying the insertion and deletion costs of
tokens. Some obvious heuristics include:

Deletion should usually be more expensive than insertion.
Common operators (e.g., multiplication) should have lower cost than uncom-
mon operators (e.g., modulo division) in the same place in the grammar.
Starter symbols (e.g., begin, if, () should have higher cost than their corre-
sponding final symbols (end, fi,)).
‘‘Noise’’ symbols (comma, semicolon, do) should have very low cost.

Error Recovery in Bottom-Up Parsers

Locally least-cost repair is possible in bottom-up parsers, but it isn’t as easy as it
is in top-down parsers. The advantage of a top-down parser is that the content of
the parse stack unambiguously identifies the context of an error, and specifies the
constructs expected in the future. The stack of a bottom-up parser, by contrast,
describes a set of possible contexts, and says nothing explicit about the future.

In practice, most bottom-up parsers tend to rely on panic-mode or phrase-level
recovery. The intuition is that when an error occurs, the top few states on the parse
stack represent the shifted prefix of an erroneous construct. Recovery consists of
popping these states off the stack, deleting the remainder of the construct from
the incoming token stream, and then restarting the parser, possibly after shifting a
fictitious nonterminal to represent the erroneous construct.

Unix’s yacc/bison provides a typical example of bottom-up phrase-level re-
covery. In addition to the usual tokens of the language, yacc/bison allows the
compiler writer to include a special token, error, anywhere in the right-hand
sides of grammar productions. When the parser built from the grammar detects a
syntax error, it

1. Calls the function yyerror, which the compiler writer must provide. Normally,
yyerror simply prints a message (e.g., ‘‘parse error’’), which yacc/bison passes
as an argument

2.3.5 Recovering from Syntax Errors C 11

2. Pops states off the parse stack until it finds a state in which it can shift the error
token (if there is no such state, the parser terminates)

3. Inserts and then shifts the error token
4. Deletes tokens from the input stream until it finds a valid look-ahead for the

new (post error) context
5. Temporarily disables reporting of further errors
6. Resumes parsing

If there are any semantic action routines associated with the production con-
taining the error token, these are executed in the normal fashion. They can do
such things as print additional error messages, modify the symbol table, patch up
semantic processing, prompt the user for additional input in an interactive tool
(yacc/bison can be used to build things other than batch-mode compilers), or
disable code generation. The rationale for disabling further syntax errors is to make
sure that we have really found an acceptable context in which to resume parsing
before risking cascading errors. Yacc/bison automatically reenables the reporting
of errors after successfully shifting three real tokens of input. A semantic action
routine can reenable error messages sooner if desired by calling the built-in routine
yyerrorok.

For our example calculator language, we can imagine building a yacc/bisonEXAMPLE 2.53
Panic mode in yacc/bison parser using the bottom-up grammar of Figure 2.25. For panic-mode recovery, we

might want to back out to the nearest statement:

stmt −→ error
{printf("parsing resumed at end of current statement\n");}

The semantic routine written in curly braces would be executed when the parser
recognizes stmt −→ error .3 Parsing would resume at the next token that can
follow a statement—in our calculator language, at the next id, read, write, or
$$.

A weakness of the calculator language, from the point of view of error recovery,EXAMPLE 2.54
Panic mode with statement
terminators

is that the current, erroneous statement may well contain additional ids. If we
resume parsing at one of these, we are likely to see another error right away. We
could avoid the error by disabling error messages until several real tokens have
been shifted. In a language in which every statement ends with a semicolon, we
could have more safely written

stmt −→ error ;
{printf("parsing resumed at end of current statement\n");}

In both of these examples we have placed the error symbol at the beginningEXAMPLE 2.55
Phrase-level recovery in
yacc/bison

of a right-hand side, but there is no rule that says it must be so. We might decide,

3 The syntax shown here is not the same as that accepted by yacc/bison, but is used for the sake of
consistency with earlier material.

C 12 Chapter 2 Programming Language Syntax

for example, that we will abandon the current statement whenever we see an error,
unless the error happens inside a parenthesized expression, in which case we will
attempt to resume parsing after the closing parenthesis. We could then add the
following production:

factor −→ (error)
{printf("parsing resumed at end of parenthesized expression\n");}

In the CFSM of Figure 2.26, it would then be possible in State 8 to shift error,
delete some tokens, shift), recognize factor, and continue parsing the surrounding
expression. Of course, if the erroneous expression contains nested parentheses, the
parser may not skip all of it, and a cascading error may still occur.

Because yacc/bison creates LALR parsers, it automatically employs context-
specific look-ahead, and does not usually suffer from the immediate error detection
problem. (A full LR parser would do slightly better.) In an SLR parser, a good error
recovery algorithm needs to employ the same trick we used in the top-down case.
Specifically, we buffer all stack changes and calls to semantic action routines until
the shift routine accepts a real token of input. If we discover an error before we
accept a real token, we undo the stack changes and throw away the buffered calls
to semantic routines. Then we can pretend we recognized the error when a full LR
parser would have.

3CHECK YOUR UNDERSTANDING

44. Why is syntax error recovery important?

45. What are cascading errors?

46. What is panic mode? What is its principal weakness?

47. What is the advantage of phrase-level recovery over panic mode?

48. What is the immediate error detection problem, and how can it be addressed?

49. Describe two situations in which context-specific FOLLOW sets may be useful.

50. Outline Wirth’s mechanism for error recovery in recursive descent parsers.
Compare this mechanism to exception-based recovery.

51. What are error productions? Why might a parser that incorporates a high-
quality, general-purpose error recovery algorithm still benefit from using such
productions?

52. Outline the FMQ algorithm. In what sense is the algorithm optimal?

53. Why is error recovery more difficult in bottom-up parsers than it is in top-down
parsers?

54. Describe the error recovery mechanism employed by yacc/bison.

2Programming Language Syntax

2.4 Theoretical Foundations

As noted in the main text, scanners and parsers are based on the finite automata
and pushdown automata that form the bottom two levels of the Chomsky language
hierarchy. At each level of the hierarchy, machines can be either deterministic or
nondeterministic. A deterministic automaton always performs the same operation
in a given situation. A nondeterministic automaton can perform any of a set of
operations. A nondeterministic machine is said to accept a string if there exists
a choice of operation in each situation that will eventually lead to the machine
saying ‘‘yes.’’ As it turns out, nondeterministic and deterministic finite automata
are equally powerful: every DFA is, by definition, a degenerate NFA, and the
construction in Example 2.14 demonstrates that for any NFA we can create a DFA
that accepts the same language. The same is not true of push-down automata: there
are context-free languages that are accepted by an NPDA but not by any DPDA.
Fortunately, DPDAs suffice in practice to accept the syntax of real programming
languages. Practical scanners and parsers are always deterministic.

2.4.1 Finite Automata

Precisely defined, a deterministic finite automaton (DFA) M consists of (1) a
finite set Q of states, (2) a finite alphabet Σ of input symbols, (3) a distinguished
initial state q1 ∈ Q, (4) a set of distinguished final states F ⊆ Q, and (5) a
transition function δ : Q × Σ→ Q that chooses a new state for M based on the
current state and the current input symbol. M begins in state q1. One by one it
consumes its input symbols, using δ to move from state to state. When the final
symbol has been consumed, M is interpreted as saying ‘‘yes’’ if it is in a state in
F; otherwise it is interpreted as saying ‘‘no.’’ We can extend δ in the obvious way
to take strings, rather than symbols, as inputs, allowing us to say that M accepts
string x if δ(q1 , x) ∈ F. We can then define L(M), the language accepted by M,

C 13

C 14 Chapter 2 Programming Language Syntax

. .

Start
d

d

d

dq3 q4

q1 q2

Figure 2.33 Minimal DFA for the language consisting of all strings of decimal digits containing
a single decimal point. Adapted from Figure 2.10 in the main text. The symbol d here is short
for ‘‘0, 1, 2, 3, 4, 5, 6, 7, 8, 9’’.

to be the set {x | δ(q1 , x) ∈ F}. In a nondeterministic finite automaton (NFA),
the transition function, δ, is multivalued: the automaton can move to any of a set
of possible states from a given state on a given input. In addition, it may move
from one state to another ‘‘spontaneously’’; such transitions are said to take input
symbol ε.

We can illustrate these definitions with an example. Consider the circles-and-EXAMPLE 2.56
Formal DFA for
d *(.d | d.) d *

arrows automaton of Figure C 2.33 (adapted from Figure 2.10 in the main text).
This is the minimal DFA accepting strings of decimal digits containing a single
decimal point. Σ = {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , .} is the machine’s input alphabet.
Q = {q1 , q2 , q3 , q4} is the set of states; q1 is the initial state; F = {q4} (a singleton in
this case) is the set of final states. The transition function can be represented by a set
of triples δ = {(q1 , 0 , q2), . . . , (q1 , 9 , q2), (q1 , . , q3), (q2 , 0 , q2), . . . , (q2 , 9 , q2),
(q2 , . , q4), (q3 , 0 , q4), . . . , (q3 , 9 , q4), (q4 , 0 , q4), . . . , (q4 , 9 , q4)}. In each triple
(q i , a , q j), δ(q i , a) = q j .

Given the constructions of Examples 2.12 and 2.14, we know that there exists
an NFA that accepts the language generated by any given regular expression, and
a DFA equivalent to any given NFA. To show that regular expressions and finite
automata are of equivalent expressive power, all that remains is to demonstrate that
there exists a regular expression that generates the language accepted by any given
DFA. We illustrate the required construction below for our decimal strings example
(Figure C 2.33). More formal and general treatment of all the regular language
constructions can be found in standard automata theory texts [HMU07, Sip13].

From a DFA to a Regular Expression

To construct a regular expression equivalent to a given DFA, we employ a dynamic
programming algorithm that builds solutions to successively more complicated
subproblems from a table of solutions to simpler subproblems. We begin with a set
of simple regular expressions that describe the transition function, δ. For all states
i, we define

r0
i i = a1 | a2 | . . . | am | ε

2.4.1 Finite Automata C 15

where {a1 | a2 | . . . | am} = {a | δ(q i , a) = q i} is the set of characters
labeling the ‘‘self-loop’’ from state q i back to itself. If there is no such self-loop,
r0

i j = ε. Similarly, for i ̸= j, we define

r0
i j = a1 | a2 | . . . | am

where {a1 | a2 | . . . | am} = {a | δ(q i , a) = q j} is the set of characters
labeling the arc from q i to q j. If there is no such arc, r0

i j is the empty regular
expression. (Note the difference here: we can stay in state q i by not accepting any
input, so ε is always one of the alternatives in r0

i i , but not in r0
i j when i ̸= j.)

Given these r0 expressions, the dynamic programming algorithm inductively
calculates expressions rk

i j with larger superscripts. In each, k names the highest-
numbered state through which control may pass on the way from q i to q j. We
assume that states are numbered starting with q1, so when k = 0 we must transition
directly from q i to q j , with no intervening states.

In our small example DFA, r0
11 = r0

33 = ε, and r0
22 = r0

44 = 0 | 1 | 2 | 3 | 4 | 5EXAMPLE 2.57
Reconstructing a regular
expression for the decimal
string DFA

| 6 | 7 | 8 | 9 | ε, which we will abbreviate d | ε. Similarly, r0
13 = r0

24 = ., and
r0

12 = r0
34 = d. Expressions r0

14, r0
21, r0

23, r0
31, r0

32, r0
41, r0

42, and r0
43 are all empty.

For k > 0, the rk
i j expressions will generally generate multicharacter strings. At

each step of the dynamic programming algorithm, we let

rk
i j = rk−1

i j | rk−1
i k rk−1

kk * rk−1
k j

That is, to get from q i to q j without going through any states numbered higher
than k, we can either go from q i to q j without going through any state numbered
higher than k− 1 (which we already know how to do), or else we can go from q i to
qk (without going through any state numbered higher than k − 1), travel out from
qk and back again an arbitrary number of times (never visiting a state numbered
higher than k − 1 in between), and finally go from qk to q j (again without visiting
a state numbered higher than k − 1). If any of the constituent regular expressions
is empty, we omit its term of the outermost alternation. At the end, our overall
answer is rn

1 f1
| rn

1 f2
| . . . | rn

1 f t
, where n = |Q| is the total number of states and

F = {q f1 , q f2 , . . . , q f t} is the set of final states.
Because r0

11 = ε and there are no transitions from States 2, 3, or 4 to State 1,
nothing changes in the first inductive step in our example; that is, ∀i [r1

i i = r0
i i].

The second step is a bit more interesting. Since we are now allowed to go through
State 2, we have r2

22 = r2
22 r2

22 * r2
22 = (d | ε) | (d | ε) (d | ε)*(d | ε) = d * .

Because r1
21, r1

23, r1
32, and r1

42 are empty, however, r2
11, r2

33, and r2
44 remain the same

as r1
11, r1

33, and r1
44. In a similar vein, we have

r2
12 = d | d (d | ε)*(d | ε) = d+

r2
14 = d (d | ε)* . = d+ .

r2
24 = . | (d | ε) (d | ε)* . = d * .

C 16 Chapter 2 Programming Language Syntax

Missing transitions and empty expressions from the previous step leave r2
13 =

r1
13 = . and r2

34 = r1
34 = d. Expressions r2

21, r2
23, r2

31, r2
32, r2

41, r2
42, and r2

43 remain
empty.

In the third inductive step, we have

r3
13 = . | . ε * ε = .

r3
14 = d+ . | . ε * d = d+ . | . d

r3
34 = d | εε * d = d

All other expressions remain unchanged from the previous step.
Finally, we have

r4
14 = (d+ . | . d) | (d+ . | . d) (d | ε)*(d | ε)

= (d+ . | . d) | (d+ . | . d) d *
= (d+ . | . d) d *
= d+ . d * | . d+

Since F has a single member (q4), this expression is our final answer.

Space Requirements

In Section 2.2.1 we noted without proof that the conversion from an NFA to a DFA
may lead to exponential blow-up in the number of states. Certainly this did not
happen in our decimal string example: the NFA of Figure 2.8 has 14 states, while
the equivalent DFA of Figure 2.9 has only 7, and the minimal DFA of Figures 2.10
and C 2.33 has only 4.

Consider, however, the subset of (a | b | c)* in which some letter appears atEXAMPLE 2.58
A regular language with a
large minimal DFA

least three times. The minimal DFA for this language has 28 states. As shown in
Figure C 2.34, 27 of these are states in which we have seen i, j, and k as, bs, and cs,
respectively. The 28th (and only final) state is reached once we have seen at least
three of some specific character.

By contrast, there exists an NFA for this language with only eight states, as
shown in Figure C 2.35. It requires that we ‘‘guess,’’ at the outset, whether we will
see three as, three bs, or three cs. It mirrors the structure of the natural regu-
lar expression (a | b | c)* a (a | b | c)* a (a | b | c)* a (a | b | c)* |
(a | b | c)* b (a | b | c)* b (a | b | c)* b (a | b | c)* | (a | b | c)*
c (a | b | c)* c (a | b | c)* c (a | b | c)* .

Of course, the eight-state NFA does not emerge directly from the construction
of Figure 2.7; that construction produces a 52-state machine with a certain amount
of redundancy, and with many extraneous states and epsilon productions. ButEXAMPLE 2.59

Exponential DFA blow-up consider the similar subset of (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)* in
which some digit appears at least ten times. The minimal DFA for this language
has 10,000,000,001 states: a non-final state for each combination of zeros through
nines with less than ten of each, and a single final state reached once any digit has
appeared at least ten times. One possible regular expression for this language is

2.4.1 Finite Automata C 17

a,b,c

a,b,c

a,c

b,c b,c

a,c

a,b

a,b

a

a

a

a

a

c

c

c c

c

b

b b

b b

Start

000 100 200

010 110 210

020 120 220

001 101 201

011 111 211

021 121 221

002 102 202

012 112 212

022 122 222

Figure 2.34 DFA for the language consisting of all strings in (a | b | c)* in which some letter appears at least three times.
State name i jk indicates that i as, j bs, and k cs have been seen so far. Within the cubic portion of the figure, most edge labels
are elided: a transitions move to the right, b transitions go back into the page, and c transitions move down.

((0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0
(0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0
(0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)*)

| ((0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1
(0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1
(0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)*)

| . . .

C 18 Chapter 2 Programming Language Syntax

Start

a

bb b

a

a,b,c a,b,c

b,c b,c

a,c a,c

a,b a,b

c

a

c

c

Figure 2.35 NFA corresponding to the DFA of Figure C 2.34.

| ((0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9
(0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9
(0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)*)

Our construction would yield a very large NFA for this expression, but clearly
many orders of magnitude smaller than ten billion states!

2.4.2 Push-Down Automata

A deterministic push-down automaton (DPDA) N consists of (1) Q, (2) Σ, (3)
q1, and (4) F, as in a DFA, plus (6) a finite alphabet Γ of stack symbols, (7) a
distinguished initial stack symbol Z1 ∈ Γ, and (5′) a transition function δ :
Q × Γ × {Σ ∪ {ε}} → Q × Γ∗, where Γ∗ is the set of strings of zero or more
symbols from Γ. N begins in state q1, with symbol Z1 in an otherwise empty
stack. It repeatedly examines the current state q and top-of-stack symbol Z. If
δ(q,ε, Z) is defined, N moves to state r and replaces Z with α in the stack, where
(r, α) = δ(q,ε, Z). In this case N does not consume its input symbol. If δ(q,ε, Z)
is undefined, N examines and consumes the current input symbol a. It then moves
to state s and replaces Z with β, where (s, β) = δ(q, a , Z). N is interpreted as
accepting a string of input symbols if and only if it consumes the symbols and ends
in a state in F.

As with finite automata, a nondeterministic push-down automaton (NPDA)
is distinguished by a multivalued transition function: an NPDA can choose any
of a set of new states and stack symbol replacements when faced with a given
state, input, and top-of-stack symbol. If δ(q,ε, Z) is nonempty, N can also choose
a new state and stack symbol replacement without inspecting or consuming its
current input symbol. While we have seen that nondeterministic and deterministic
finite automata are equally powerful, this correspondence does not carry over to
push-down automata: there are context-free languages that are accepted by an
NPDA but not by any DPDA.

2.4.3 Grammar and Language Classes C 19

The proof that CFGs and NPDAs are equivalent in expressive power is more
complex than the corresponding proof for regular expressions and finite automata.
The proof is also of limited practical importance for compiler construction; we do
not present it here. While it is possible to create an NPDA for any CFL, simulating
that NPDA may in some cases require exponential time to recognize strings in the
language. (The O(n3) algorithms mentioned in Section 2.3 do not take the form
of PDAs.) Practical programming languages can all be expressed with LL or LR
grammars, which can be parsed with a (deterministic) PDA in linear time.

An LL(1) PDA is very simple. Because it makes decisions solely on the basis of
the current input token and top-of-stack symbol, its state diagram is trivial. All but
one of the transitions is a self-loop from the initial state to itself. A final transition
moves from the initial state to a second, final state when it sees $$ on the input and
the stack. As we noted in Section 2.3.4, the state diagram for an SLR(1) or LALR(1)
parser is substantially more interesting: it’s the characteristic finite-state machine
(CFSM). Full LR(1) parsers have similar machines, but usually with many more
states, due to the need for path-specific look-ahead.

A little study reveals that if we define every state to be accepting, then the CFSM,
without its stack, is a DFA that recognizes the grammar’s viable prefixes. These are
all the strings of grammar symbols that can begin a sentential form in the canonical
(right-most) derivation of some string in the language, and that do not extend
beyond the end of the handle. The algorithms to construct LL(1) and SLR(1) PDAs
from suitable grammars were given in Sections 2.3.3 and 2.3.4.

2.4.3 Grammar and Language Classes

As we noted in Section 2.1.2, a scanner is incapable of recognizing arbitrarily nestedEXAMPLE 2.60
0n1n is not a regular
language

constructs. The key to the proof is to realize that we cannot count an arbitrary
number of left-bracketing symbols with a finite number of states. Consider, for
example, the problem of accepting the language 0n 1n . Suppose there is a DFA M
that accepts this language. Suppose further that M has m states. Now suppose we
feed M a string of m + 1 zeros. By the pigeonhole principle (you can’t distribute
m objects among p < m pigeonholes without putting at least two objects in some
pigeonhole), M must enter some state q i twice while scanning this string. Without
loss of generality, let us assume it does so after seeing j zeros and again after seeing
k zeros, for j ̸= k. Since we know that M accepts the string 0 j 1 j and the string
0k 1k , and since it is in precisely the same state after reading 0 j and 0k , we can
deduce that M must also accept the strings 0 j 1k and 0k 1 j . Since these strings are
not in the language, we have a contradiction: M cannot exist.

Within the family of context-free languages, one can prove similar theorems
about the constructs that can and cannot be recognized using various parsing
algorithms. Though almost all real parsers get by with a single token of look-ahead,
it is possible in principle to use more than one, thereby expanding the set of gram-
mars that can be parsed in linear time. In the top-down case we can redefine
FIRST and FOLLOW sets to contain pairs of tokens in a more or less straightforward

C 20 Chapter 2 Programming Language Syntax

fashion. If we do this, however, we encounter a more serious version of the im-
mediate error detection problem described in Section C 2.3.5. There we saw that
the use of context-independent FOLLOW sets could cause us to overlook a syntax
error until after we had needlessly predicted one or more epsilon productions.
Context-specific FOLLOW sets solved the problem, but did not change the set of
valid programs that could be parsed with one token of look-ahead. If we define
LL(k) to be the set of all grammars that can be parsed predictively using the top-of-
stack symbol and k tokens of look-ahead, then it turns out that for k > 1 we must
adopt a context-specific notion of FOLLOW sets in order to parse correctly. The
algorithm of Section 2.3.3, which is based on context-independent FOLLOW sets,
is actually known as SLL (simple LL), rather than true LL. For k = 1, the LL(1) and
SLL(1) algorithms can parse the same set of grammars. For k > 1, LL is strictly
more powerful. Among the bottom-up parsers, the relationships among SLR(k),
LALR(k), and LR(k) are somewhat more complicated, but extra look-ahead always
helps.

Containment relationships among the classes of grammars accepted by popularEXAMPLE 2.61
Separation of grammar
classes

linear-time algorithms appear in Figure C 2.36. The LR class (no suffix) contains
every grammar G for which there exists a k such that G ∈ LR(k); LL, SLL, SLR, and
LALR are similarly defined. Grammars can be found in every region of the figure.
Examples appear in Figure C 2.37. Proofs that they lie in the regions claimed are
deferred to Exercise C 2.35.

For any context-free grammar G and parsing algorithm P, we say that G is
a P grammar (e.g., an LL(1) grammar) if it can be parsed using that algorithm.
By extension, for any context-free language L, we say that L is a P language if
there exists a P grammar for L (this may not be the grammar we were given).
Containment relationships among the classes of languages accepted by the popularEXAMPLE 2.62

Separation of language
classes

parsing algorithms appear in Figure C 2.38. Again, languages can be found in every
region. Examples appear in Figure C 2.39; proofs are deferred to Exercise C 2.36.

It turns out that every context-free language that can be parsed deterministically
has an SLR(1) grammar. In fact, any language that can parsed deterministically
and in which no valid string can be extended to create another valid string (this
is called the prefix property) has what is called an LR(0) grammar—one that can
be parsed with no lookahead whatsoever! In the CFSM for such a grammar, any
state containing an item with a . at the end will have no other item with a . in the
middle. When such a state is reached, the parser can blindly reduce. If our scanner
appends an explicit $$ marker at end-of-file, it is easy to see that our (augmented)
language will have the prefix property, and an LR(0) grammar must exist. At the
same time, LR(0) grammars tend to be large and unintuitive. Among other things,
they must generally avoid any epsilon productions: if an item A −→ ε. shares a
state with an item in which the dot precedes a terminal, we won’t be able to tell
whether to ‘‘recognize’’ ε without peeking ahead. Moreover, for any given grammar,
LR(0) parsers have no space or time advantage over SLR(1) or LALR(1). As a result,
LR(0) tends not to be used in practice.

The relationships among language classes are not as rich as the relationships
among grammar classes. Most real programming languages can be parsed by any

2.4.3 Grammar and Language Classes C 21

LR
LL

LL(2)LR(2)

LR(1)
LL(1)

LALR

LALR(2)

LALR(1)

LR(0)

Figure 2.36 Containment relationships among popular grammar classes. Beyond the contain-
ments shown, SLL(k) is just inside LL(k), for k ≥ 2; SLR(k) is just inside LALR(k), for k ≥ 1.

LL(2) but not SLL:
S −→ a A a | b A b a
A −→ b | ε

SLL(k) but not LL(k − 1):
S −→ ak−1 b | ak

LR(0) but not LL:
S −→ A b
A −→ A a | a

SLL(1) but not LALR:
S −→ A a | B b | c C
C −→ A b | B a
A −→ D
B −→ D
D −→ ε

SLL(k) and SLR(k) but not LR(k − 1):
S −→ A ak−1 b | B ak−1 c
A −→ ε
B −→ ε

LALR(1) but not SLR:
S −→ b A b | A c | a b
A −→ a

LR(1) but not LALR:
S −→ a C a | b C b | a D b | b D a

C −→ c
D −→ c

Unambiguous but not LR:
S −→ a S a | ε

Figure 2.37 Examples of grammars in various regions of Figure C 2.36.

C 22 Chapter 2 Programming Language Syntax

LL = SLL

Inherently
ambiguous

Nondeterministic
context-free

= deterministic context-free
with prefix property

SLR(1) = LR
= deterministic

context-free

LR(0)

LL(2) = SLL(2)

LL(1) = SLL(1)

Figure 2.38 Containment relationships among popular language classes.

Nondeterministic language:
{an bn c : n ≥ 1} ∪ {an b2n d : n ≥ 1}

Inherently ambiguous language:
{a i b j ck

: i = j or j = k ; i , j, k ≥ 1}
Language with LL(k) grammar but no LL(k−1) grammar:
{an(b | c | bk d) n : n ≥ 1}

Language with LR(0) grammar but no LL grammar:
{an bn

: n ≥ 1} ∪ {an cn
: n ≥ 1}

Figure 2.39 Examples of languages in various regions of Figure C 2.38.

of the popular parsing algorithms, though the grammars are not always pretty, and
special-purpose ‘‘hacks’’ may sometimes be required when a language is almost,
but not quite, in a given class. The principal advantage of the more powerful parsing
algorithms (e.g., full LR) is that they can parse a wider variety of grammars for a
given language. In practice this flexibility makes it easier for the compiler writer to
find a grammar that is intuitive and readable, and that facilitates the creation of
semantic action routines.

2.4.3 Grammar and Language Classes C 23

3CHECK YOUR UNDERSTANDING

55. What formal machine captures the behavior of a scanner? A parser?

56. State three ways in which a real scanner differs from the formal machine.

57. What are the formal components of a DFA?

58. Outline the algorithm used to construct a regular expression equivalent to a
given DFA.

59. What is the inherent ‘‘big-O’’ complexity of parsing with a simulated NPDA?
Why is this worse than the O(n3) time mentioned in Section 2.3?

60. How many states are there in an LL(1) PDA? An SLR(1) PDA? Explain.

61. What are the viable prefixes of a CFG?

62. Summarize the proof that a DFA cannot recognize arbitrarily nested constructs.

63. Explain the difference between LL and SLL parsing.

64. Is every LL(1) grammar also LR(1)? Is it LALR(1)?

65. Does every LR language have an SLR(1) grammar?

66. Why are there never any epsilon productions in an LR(0) grammar?

67. Why are the containment relationships among grammar classes more complex
than those among language classes?

2Programming Language Syntax

2.6 Exercises

2.31 Give an example of an erroneous program fragment in which consideration
of semantic information (e.g., types) might help one make a good choice
between two plausible ‘‘corrections’’ of the input.

2.32 Give an example of an erroneous program fragment in which the ‘‘best’’
correction would require one to ‘‘back up’’ the parser (i.e., to undo recent
predictions/matches or shifts/reductions).

2.33 Extend your solution to exercise 2.21 to implement Wirth’s syntax error
recovery mechanism
(a) with global FOLLOW sets, as in Example C 2.45.
(b) with local FOLLOW sets, as in Example C 2.47.
(c) with avoidance of ‘‘starter symbol’’ deletion, as in Example C 2.48.

2.34 Extend your solution to exercise 2.21 to implement exception-based syntax
error recovery, as in Example C 2.49.

2.35 Prove that the grammars in Figure C 2.37 lie in the regions claimed.
2.36 (Difficult) Prove that the languages in Figure C 2.39 lie in the regions claimed.
2.37 Prove that regular expressions and left-linear grammars are equally powerful.

A left-linear grammar is a context-free grammar in which every right-hand
side contains at most one nonterminal, and then only at the left-most end.

C 25

2Programming Language Syntax

2.7 Explorations

2.46 Experiment with syntax errors in your favorite compiler. Feed the compiler
deliberate errors and comment on the quality of the recovery or repair. How
often does it do the ‘‘right thing’’? How often does it generate cascading
errors? Speculate as to what sort of recovery or repair algorithm it might be
using.

2.47 Spelling mistakes (typos in keywords and identifiers) are a common source of
syntax and static semantic errors. Identifying such errors—and guessing what
the user meant to type—could result in significantly better error recovery.
Discuss how you might go about incorporating spelling correction into some
existing error recovery system. (Hint: You might want to consult Morgan’s
early paper on this subject [Mor70].)

C 27

